Supplementary material to the paper titled

Role of local structural distortions in the variation of martensitic

transformation temperature with e/a ratio in $Ni_2Mn_{1+x}Z_{1-x}$ (Z =

In, Sn or Sb) alloys

Nafea Manea¹, Edmund Welter² and K R Priolkar^{1a1,2}

¹¹School of Physical and Applied Sciences,
Goa University, Taleigao Plateau, Goa 403206 India
²²Deutsches Elektronen-Synchrotron DESY,
Notkestr. 85, 22607 Hamburg, Germany

TABLE I. Lattice parameters obtained from Rietveld fitting for the X-ray diffraction patterns of all the alloys.

Alloy	RT Structure	Lattice parameters		
$\mathrm{Ni_2Mn_{1.3}In_{0.7}}$	$L2_1$	a = 6.01278(5) Å		
$Ni_2Mn_{1.35}In_{0.65}$	$L2_1$	a = 6.00701(5) Å		
$\mathrm{Ni}_{2}\mathrm{Mn}_{1.4}\mathrm{In}_{0.6}$	$7\mathrm{M}$	a = 4.3892(2) Å, $b = 5.6424(2)$ Å, $c = 4.3337(1)$ Å,		
		$\beta=92.91(4)^\circ,q=0.3321(4)c^*$		
$\mathrm{Ni_2Mn_{1.5}In_{0.5}}$	$7\mathrm{M}$	a = 4.4024(3) Å, $b = 5.5470(4)$ Å, $c = 4.3240(2)$ Å,		
		$\beta = 94.23(1)^{\circ}, q = 0.3101(3)c^{*}$		
$Ni_2Mn_{1.33}Sn_{0.67}$	$L2_1$	a = 6.01203(8) Å		
$\rm Ni_2MnSb$	$L2_1$	a = 6.00053(4) Å		
$\mathrm{Ni_2Mn_{1.6}Sn_{0.4}}$	$7\mathrm{M}$	a = 4.3003(12) Å, $b = 5.6202(19)$ Å, $c = 4.3110(12)$ Å,		
		$\beta = 90.33(5)$ °, $q = 0.2874(45)c^*$		
$Ni_2Mn_{1.65}Sb_{0.35}$	7M &	a = 4.2997(18) Å, $b = 5.6089(22)$ Å, $c = 4.2916(35)$ Å		
		$\beta = 90.54(1)$ °, $q = 0.3055(54)c^*$		

^a Author to whom correspondence should be addressed

 $\label{eq:FIG.1.} FIG. 1. DSC thermograms of Ni_2Mn_{1.5}In_{0.5}, Ni_2Mn_{1.4}In_{0.6}, Ni_2Mn_{1.6}Sn_{0.4}, Ni_2Mn_{1.34}Sn_{0.66}, Ni_2Mn_{1.65}Sb_{0.35} and Ni_2MnSb.$

FIG. 2. k^2 weighted Mn and Ni EXAFS of Ni₂Mn_{1.5}In_{0.5}, Ni₂Mn_{1.4}In_{0.6}, Ni₂Mn_{1.35}In_{0.65} and Ni₂Mn_{1.3}In_{0.7}. This data in the range k = 3 to 14 Å⁻¹ was Fourier transformed to *R*-space and fitted with a structural model.

FIG. 3. k^2 weighted Mn and Ni EXAFS of Ni₂Mn_{1.6}Sn_{0.4}, Ni₂Mn_{1.34}Sn_{0.66}, Ni₂MnSb and Ni₂Mn_{1.65}Sb_{0.35}. This data in the range k = 3 to 14 Å⁻¹ was Fourier transformed to *R*-space and fitted with a structural model.

TABLE II. Fitting parameters used in fitting Mn and Ni EXAFS data in Ni₂Mn_{1+x}Z_{1-x} (Z = In, Sn, Sb) alloys. Each path has three unique parameters representing coordination number (CN), change in path length (ΔR) and mean square radial displacement (σ^2). Additionally there are two common parameters, Amplitude reduction factor, S_0^2 and ΔE_0 . S_0^2 for Mn and Ni were estimated from fitting the respective metal foils and were kept fixed. CNs were also kept fixed to their bulk crystallographic values. A total of 14 parameters were varied in a single fit consisting both, Mn and Ni EXAFS data set.

Mn EXAFS			Ni EXAFS		
ΔE_0	e-Mn		ΔE_0	e-Ni	
Path	ΔR	σ^2	Path	ΔR	σ^2
Mn–Ni	delr1	ss1	Ni–Mn	delr1	ss1
Mn–Z	delr2	ss2	Ni–Z	delr5	ss5
$\mathrm{Mn}\text{-}\mathrm{Mn}_Z$	delr3	ss3	Ni–Ni	delr6	ss6
Mn–Mn	delr4	ss4			