Supporting information

Effect of Cu/Au for Propylene Epoxidation over Ag₂O(111) Surface: A DFT Study

Zean Xie¹, Xin Wang¹, Simeng Zhao¹, Ke Zhang¹, Yangyang Song^{*,1}, Guichang Wang^{*,2}, Zhen Zhao^{*,1,3}

¹Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, P. R. China; ²Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China; ³State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, P. R. China

*Corresponding author: Zhen Zhao. E-mail: zhenzhao@cup.edu.cn; zhaozhen1586@163.com Guichang Wang. E-mail: wangguichang@nankai.edu.cn Yangyang Song. E-mail: songyyabc@nankai.edu.cn Telephone: +86-24-86578782 Table of Contents:

- 1. AIMD simulations
- 2. Adsorption properties
- 3. The reaction mechanism of propylene epoxidation on the $Ag_2O(111)$ surface
- 4. The reaction mechanism of propylene epoxidation on the Au-Ag₂O(111) surface
- 5. PDOS analysis

1. AIMD simulations

Figure S1. AIMD simulation of Ag₂O(111) (a) (b), Cu-Ag₂O(111) (c) (d) and Au-Ag₂O(111) (e) (f) facets

2. Adsorption properties

2.1 Propylene. Three stable configurations of absorbed propylene were considered on the Ag₂O(111) surface (see Figure S2a), which can create different reaction pathways. For the first configuration (I), propylene adsorbs on the Ag_{cus} site via π type with the adsorption energy of – 1.63 eV, where the distance of C₁–Ag_{cus} is 2.29 Å and the length of C₂–Ag_{cus} is 2.38 Å. In this configuration, the methyl group of propylene aims at a nearby O_{suf}, and this absorbed configuration prefers to participate in the AHS pathway. For the second configuration (II), propylene also adsorbs on the Ag_{cus} site with π type and the C₁ atom tends to a nearby O_{suf}, where the distance of C₁–Ag_{cus} is 2.29 Å and the length of C₂–Ag_{cus} is 2.42 Å. This absorbed configuration has the adsorption energy of – 1.59 eV and inclines to the OMMP₁ pathway. For the third configuration (III), propylene adsorbs on the Ag_{cus} site with π type as well, different with the former absorptions, the C₂ atom approaches to a nearby O_{suf} and this absorbed configuration, the distance of C₁–Ag_{cus} site with π type as well, different with the former absorptions, the C₂ atom approaches to a nearby O_{suf} and this absorbed configuration tends to the OMMP₂ pathway. In this situation, the distance of C₁–Ag_{cus} is 2.31 Å and the length of C₂–Ag_{cus} is 2.40 Å, and the adsorption energy is – 1.57 eV. Above studies indicate that the first adsorption configuration is the most stable on the Ag₂O(111) surface.

On the Cu–Ag₂O(111) surface, propylene employed three different adsorbed types for different reaction pathways (see Figure S2b). For the first type (I), tending to the AHS pathway, propylene prefers to the Cu site with π type, where the length of C₁–Cu is 2.02 Å and the distance of C₂–Cu is 2.09 Å. The methyl group of propylene in this type approaches to a nearby O_{suf}, and this type has the adsorption energy of – 2.46 eV. For the second type (II), propylene adsorbs on the Cu site for π type with the adsorption energy of – 2.31 eV, in which the length of C₁–Cu is 2.02 Å and the distance of C₂–Cu is 2.08 Å, and the C₁ atom is inclined to a neighboring O_{suf}. For the third type (III), propylene adsorbs on the Cu site with π type as well, in which the length of C₁–Cu is 2.01 Å and the distance of C₂–Cu is 2.09 Å. In this absorbed type, the C₂ atom towards a neighboring O_{suf}, and the adsorption energy is – 2.29 eV. Both type (II) and type (III) prefer the OMMP pathway, the calculations exhibit that the first adsorption type is the most stable on the Cu–Ag₂O(111) surface.

On the Au–Ag₂O(111) surface, three adsorbed configurations of propylene were discussed for different pathways (see Figure S2c). For the first configuration (I), propylene prefers to the Au site with π type, where the length of C₁–Au is 2.15 Å and the distance of C₂–Au is 2.20 Å. The methyl group approaches to a nearby O_{suf}, and this type has the adsorption energy of – 2.61 eV, which tends to the AHS pathway. For the second configuration (II), propylene adsorbs on the Au site for π type

with the adsorption energy of – 2.43 eV, where the length of C_1 –Au is 2.15 Å and the distance of C_2 –Au is 2.20 Å, and the C_1 atom is inclined to a neighboring O_{suf} . For the third configuration (III), propylene adsorbs on the Au site with π type, where the length of C_1 –Au is 2.14 Å and the distance of C_2 –Au is 2.19 Å, the C_2 atom towards a neighboring O_{suf} , and the adsorption energy is – 2.43 eV. Both configuration (II) and configuration (III) tend to the OMMP pathway, the calculations show that the first adsorption configuration is the most stable on the Au–Ag₂O(111) surface.

2.2 Allyl. The adsorption of allyl on the Ag₂O(111) surface with and without Cu or Au doping has been calculated, it can be found that the stable adsorbent configuration prefers top site, where the terminal C atom binds to surface Ag_{cus}/Cu/Au atom. On the Ag₂O(111) surface, the distance of C-Ag_{cus} is about 2.20 Å, and the adsorption energy is -1.85 eV (Figure S2a). On the Cu-Ag₂O(111) surface, the length of C-Cu is 1.99 Å, and the adsorption energy is -2.67 eV (Figure S2b). On the Au-Ag₂O(111) surface, the distance of C-Au is 2.08 Å, and the adsorption energy is -2.78 eV (Figure S2c).

2.3 Acrolein(C_3H_4O). The adsorption of acrolein has been calculated on these surfaces (Figure S2), it can be found that the adsorption of acrolein prefers top site through O. The distance between O in acrolein and Ag_{cus} is 2.21 Å on Ag₂O(111) surface, and the adsorption energy is -1.05 eV. On the Cu-Ag₂O(111) surface, the length of Cu-O is about 1.83 Å, and the adsorption energy is about – 1.97 eV. On the Au-Ag₂O(111) surface, the distance of Au-O is 2.05 Å, and the adsorption energy is-1.68 eV.

2.4 OMMP. Propylene oxametallacycle intermediates are important for the OMMP pathway, and two different configuration intermediates can be formed by the interaction between propylene and the surface, named OMMP₁ and OMMP₂. One intermediate is OMMP₁, adopting 1,2–di– σ type, where the C₁ atom connects to a O_{suf} and the C₂ atom binds to a nearby Ag_{cus}/Cu/Au, the other intermediate is OMMP₂, also adopting 1,2–di– σ type, where the C₂ atom connects to a O_{suf} and the C₁ atom binds to a neighboring Ag_{cus}/Cu/Au. On clean surface, the distance of C₁–O_{suf} is 1.48 Å and the length of C₂–Ag_{cus} is 2.16 Å in OMMP₁ and the adsorption energy of OMMP₁ is – 1.29 eV. The distance of C₁–O_{suf} is 1.48 Å and the length of C₂–O_{suf} is 1.48 Å and the length of C₂–Cu is 1.95 Å in OMMP₁ and the adsorption energy is – 1.94 eV, the distance of C₂–O_{suf} is 1.49 Å and the bond length of C₁–Cu is 1.94 Å in OMMP₂ and the adsorption energy is – 2.18 eV.

On the Au–Ag₂O(111) surface, the distance of C_1 –O_{suf} is 1.46 Å and the bond length of C_2 –Cu is 2.08 Å in OMMP₁ and the adsorption energy is –2.61 eV, the distance of C_2 –O_{suf} is 1.47 Å and the bond length of C₁–Cu is 2.06 Å in OMMP₂ and the adsorption energy is – 2.83 eV.

2.5 PO, Propanal, and Acetone. The adsorption properties of products in the OMMP pathway have been discussed, it can be found that all products adsorption prefer top type, where the oxygen atom among product binds to a surface $Ag_{cus}/Cu/Au$. On clean surface, the distances between Ag_{cus} and oxygen atom among PO, propanal, and acetone are 2.24, 2.22, and 2.17 Å, and the corresponding adsorption energies are – 1.16 eV, – 1.22 eV, and – 1.12 eV, respectively. On the Cu– $Ag_2O(111)$ surface, the corresponding distances of PO, propanal, and acetone are 1.89, 1.84 and 1.84 Å, and the adsorption energies are – 1.88 eV, – 2.03 eV, and – 2.07 eV, respectively. On the Au– $Ag_2O(111)$ surface, the corresponding lengths of PO, propanal, and acetone are 2.10, 2.05 and 2.05 Å, and the adsorption energies are – 1.64 eV, – 1.81 eV, and – 1.81 eV, respectively.

Figure S2. Optimized geometries and corresponding adsorption energies for key species for propylene epoxidation on the $Ag_2O(111)$ (a), $Cu-Ag_2O(111)$ (b), and $Au-Ag_2O(111)$ (c) surfaces (unit: Å).

3. The reaction mechanism of propylene epoxidation on the $Ag_2O(111)$ surface

Figure S3. Optimized geometries along the AHS pathway of propylene on Ag₂O(111) surface (unit: Å).

Figure S4. Optimized geometries along the OMMP pathway of propylene on Ag₂O(111) surface (unit: Å).

4. The reaction mechanism of propylene epoxidation on the Au-Ag₂O(111) surface

Figure S5. Optimized geometries along the AHS pathway of propylene on the Au-Ag₂O(111) surface (unit: Å).

Figure S6. Optimized geometries along the OMMP pathway of propylene on the Au-Ag₂O(111) surface (unit: Å).

5. PDOS analysis

Figure S7. The PDOS of the O_{suf} 2p orbitals on the $Ag_2O(111)$ (a), $Cu-Ag_2O(111)$ (b), and $Au-Ag_2O(111)$ (c) facets.