Quantum spins Hall states in MX_2 (M = Ru, Os; X = As, Sb)

monolayers

Tao Jing,^{1,*} Dongmei Liang,¹ Yongchen Xiong,¹ Jun Zhang,¹ Yongjin Hu,¹ Qin Zhang,¹ Dongyan Lv,¹ Zhi He,¹ Mingsen Deng,^{2,*} AFFILIATIONS

1 School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.

2 School of information, Guizhou University of Finance and Economics, Guiyang 550004, People's Republic of China.

Table S1 Lattice parameters of the predicted RuAs₂, RuSb₂, OsAs₂, and OsSb₂ monolayers.

	Lattice parameters (Å)			
Phase	1T'	1T	2Н	
RuAs ₂	a = 3.062, b = 6.360	a = b = 3.109	a = b = 2.978	
	$\alpha = 90^{\circ}$	$\alpha = 60^{\circ}$	$\alpha = 60^{\circ}$	
RuSb ₂	a = 3.273, b = 6.648	a = b = 3.325	a = b = 3.222	
	$\alpha = 90^{\circ}$	$\alpha = 60^{\circ}$	$\alpha = 60^{\circ}$	
OsAs ₂	a = 3.093, b = 6.358	a = b = 3.148	a = b = 3.009	
	$\alpha = 90^{\circ}$	$\alpha = 60^{\circ}$	$\alpha = 60^{\circ}$	
OsSb ₂	<i>a</i> = 3.285, <i>b</i> = 6.635	a = b = 3.352	a = b = 3.217	
	$\alpha = 90^{\circ}$	$\alpha = 60^{\circ}$	$\alpha = 60^{\circ}$	

Table S2 Calculated cohesive energies for different phases of MX_2 (M = Ru, Os; X = As, Sb) monolayers.

	RuAs ₂	RuSb ₂	OsAs ₂	OsSb ₂
1T′	-6.17	-5.70	-6.69	-6.16
2H	-6.16	-5.66	-6.67	-6.09
1T	-6.04	-5.57	-6.53	-6.00

Table S3 Calculated energy oscillation intervals for different MX_2 (M = Ru, Os; X =

As,	Sb)	monolayers	after	heating	at 300K	and	500K.
-----	-----	------------	-------	---------	---------	-----	-------

Energy interval (eV)	RuAs ₂	RuSb ₂	OsAs ₂	OsSb ₂
300K	0.47	0.55	0.54	0.49
500K	0.91	0.70	0.87	0.75

Figure S1 Phonon dispersion of (a) $RuSb_2$, (b) $OsAs_2$, and (c) $OsSb_2$ monolayers,

indicating that the structures are dynamically stable.

Figure S2 Phonon dispersion of (a) RuAs₂, (b) RuSb₂, (c) OsAs₂, and (d) OsSb₂ monolayers after heating at 300K for 5 ps. Phonon dispersion of (e) RuAs₂, (f) RuSb₂, (g) OsAs₂, and (h) OsSb₂ monolayers after heating at 500K for 5 ps.

Figure S3 Band structures of (a) RuSb₂, (b) OsAs₂, and (c) OsSb₂ monolayers without SOC.

Figure S4 Band structures of (a) $RuSb_2$, (b) $OsAs_2$, and (c) $OsSb_2$ monolayers without SOC. Band structures of (d) $RuSb_2$, (e) $OsAs_2$, and (f) $OsSb_2$ monolayers with SOC. All results are calculated using the hybrid functional (HSE06) method.

Figure S5 Evolution of the Wannier charge center (WCC) for (a) $RuSb_2$, (b) $OsAs_2$, and (c) $OsSb_2$ monolayers along *k*. Topological edge states of the semi-infinite (d) $RuSb_2$, (e) $OsAs_2$, and (f) $OsSb_2$ monolayers with SOC. All results are calculated using the hybrid functional (HSE06) method.

Figure S6 Calculated band structures of RuSb_2 monolayers in the strain range from -5% to -1% in the (a) *x* direction and (c) *y* directions, and from 1% to 5% in the (b) *x* direction and (d) *y* directions.

Figure S7 Calculated band structures of $OsSb_2$ monolayers in the strain range from -5% to -1% in the (a) *x* direction and (c) *y* directions, and from 1% to 5% in the (b) *x* direction and (d) *y* directions.