Sensing of n-Butanol Vapours with Oxygen Vacancy-Enriched Zn₂SnO₄-SnO₂ Hybridcomposite

Reshmi Thekke Parayil^{1,2#}, Snehangshu Paine,^{3#} K. Mukherjee,^{3*}D. Tyagi,⁴, Manoj Mohapatra,^{1,2} Santosh K. Gupta,^{1,2*}

¹Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
 ²Homi Bhabha National Institute, Anushaktinagar, Mumbai – 400094, India
 ³Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar-382426, Gujarat, India
 ⁴Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India

RTP and SP contributed equally to this work

*To whom correspondence should be addressed. Electronic mail: <u>kalisadhanm@yahoo.com(KM) santoshg@barc.gov.in</u> (SKG)

Scheme S1: Detailed derivation of the fitting equation of the conductance transients

As discussed earlier, when the sensor is exposed to butanol, it oxidised by the pre-adsorbed oxygen species (Eqn. 3) forming RO_{ad} . Assuming the monolayer adsorption of ethanol on the sensor surface at constant temperature, T, the conductance transients can be modelled with the Langmuir-Hinshelwood adsorption mechanism. Since the Eqn. 3 is a rate-limiting step, the rate of the RO_{ad} formation can be written as:

$$\frac{dl[RO_{ad}]}{dlt} = k_a[R_g][O_{ad}^{-}] - k_d[RO_{ad}]$$
(i)

If it is assumed that at time, t, the fraction of the surface is occupied by chemisorbed oxidised vapours (RO_{ad}) is θ . The remaining unoccupied sites, $(1 - \theta)$, are filled by the excess oxyanion $({}^{O}_{ad}{}^{-})$ and concentration of the injected reducing gas such as acetone and ethanol is C_g, we may write from Eqn. (i):

$$\frac{d\theta}{dt} = k_a (1-\theta)Cg - k_d \theta \tag{ii}$$

Where, k_a and k_d represents the adsorption and desorption constants.

$$k_a = \frac{SNoKo}{\left(2\pi MRT\right)^{1/2}} exp\left(-\frac{E_a}{RT}\right)$$
(iii)

where, S denotes the surface area of the sensor where VOC adsorbed, Ko is the condensation coefficient, E_a represents the activation energy for adsorption, No and R are the Avogadro's number, and universal gas constant respectively.

Eqn. (ii) can be rearranged as;

$$\frac{dl\theta}{dlt} = k_a Cg - (k_a Cg - K_d)\theta$$
(*iv*)

Assuming $(k_a Cg - K_d) = k_{1, \text{Eqn. (iv)}}$ can be rewrite as;

$$\frac{dl\theta}{dlt} = k_a Cg - k_1 \theta \tag{V}$$

$$\frac{d\theta}{dt} + k_1 \theta = k_a Cg \tag{vi}$$

Multiplying both side of Eqn. (vi) with the integrating factor, $exp(k_1t)$;

$$\exp\left(k_{1}t\right)\frac{d\theta}{dt} + k_{1}\theta\exp\left(k_{1}t\right) = k_{a}Cg\,\exp\left(k_{1}t\right) \tag{vii}$$

Left hand side is the derivative of;

$$\frac{d}{dt}(\theta \exp(k_1 t)) = k_a Cg \exp(k_1 t)$$
(viii)

Integrate both side with respect to time, t;

$$\theta \exp(k_1 t) = k_a Cg \int exp^{(n)}(k_1 t) dt$$
 (ix)

$$\theta \exp\left(k_{1}t\right) = \frac{k_{a}Cg}{k_{1}}\exp\left(k_{1}t\right) + C \tag{x}$$

C is integration constant here. The Eqn. (x) can be rewrite as;

$$\theta = \frac{k_a Cg}{k_1} + C \exp\left(-k_1 t\right)$$
(xi)

Assuming at t=0, the surface coverage, $\theta = 0$;

$$C = -\frac{k_a Cg}{k_1} \tag{xii}$$

Replacing C in Eqn. (xi) and rewriting it;

$$\theta = \frac{k_a Cg}{k_1} (1 - \exp(-k_1 t))$$
(xii)

 $t \rightarrow \infty$, $\theta = \theta_0 = \frac{k_a Cg}{k_1}$, Eqn. (xii) can be rewritten as,

 $\theta(t) = \theta_0 \{ 1 - \exp\left[-k_1 t\right] \}$ (xiv)

When,

$$k_1 \sim \frac{1}{\tau_{1(res)}} = (k_a Cg - k_d) \tag{xv}$$

$$\theta(t) = \theta_0 \left\{ 1 - \exp\left[-\frac{t}{\tau_{1(res)}} \right] \right\}$$
(xvi)

In gas sensors, the conductance G(t) of the sensor is typically related to the surface coverage $\theta(t)$ of adsorbed molecules. Assuming the linear functional dependency between $\theta(t)$ and G(t) and the single adsorption site present on Zn₂SnO₄-SnO₂ chemiresistor, the conductance variation of the response cycle $G_A(t)$ can be written as:

$$G_A(t) = G_o + G_1 \left\{ 1 - \exp\left[-\frac{t}{\tau_{1(res)}} \right] \right\}$$
(xvii)

where G_0 is the base conductance of the sensing material, τ_1 is the response time constant.

In case of desorption cycle, the rate of change of surface coverage is written as;

$$\frac{d\theta}{dt} = -k_d \theta \tag{xviii}$$

Assuming at t=0 (when desorption started), the surface coverage, $\theta = \theta_0$ and at time t, θ would be θ_d integrating the Eqn. (xviii) from both sides,

$$\int_{\theta_0}^{\theta_d} \frac{dl\theta}{\theta} = -k_d \int_0^t dt \qquad (xix)$$

$$ln^{(n)}\left(\frac{\partial d}{\partial 0}\right) = -k_d t \tag{XX}$$

Taking exponential both side;

$$\theta_d(t) = \theta_0 exp^{[in]}(-k_d t) \tag{xxi}$$

The Eqn. (xxi) can be expressed as;

$$G_d(t) = G_o + G_2 \left\{ \exp\left[-\frac{t}{\tau_{2(rec)}} \right] \right\}$$
(xxii)

Where $k_d = \frac{1}{\tau_{2(rec)}}$, G_{2is} the change in conductance due to desorption and G_o is the baseline conductance.

From Eqn. (xvii)& Eqn. (xxii), we canwrite;

$$G(t) = G_o + G_1 \left\{ 1 - \exp\left[-\frac{t}{\tau_{1(res)}}\right] \right\} + G_2 \left\{ \exp\left[-\frac{t}{\tau_{2(rec)}}\right] \right\}$$
(xxiii)

Now assuming $k_d \ll k_a C_g$, $(k_a C_g - k_d) = k_1$ can be rewritten as,

$$k_1 = k_a C_g \tag{xiv}$$

From Eqn. (iii), we can deduce

$$k_a = A \exp\left(-\frac{E_a}{KT}\right)$$

Where, A is pre-exponential constant and K is Boltzmann constant.

From Eqn. (xv), (xxiv) and (xxv), one can write

$$\tau_1 \cdot C_g = A^{-1} \exp\left(\frac{E_a}{KT}\right)$$

$$\tau_1 = \tau_0 \exp\left(\frac{E_a}{KT}\right)$$
(xvii)
(xvii)

Where, τ_{0} is a constant. At constant concentration of the ethanol and acetone (C_g=constant), taking logarithm of both side in Eqn. (xxvii)

$$ln^{\overline{\mu}}(\tau_1) = const + \frac{E_a}{\nu \tau}$$
 Fr

om the slope of the linear fitting of $\ln(\tau_1)$ vs 1/T plot using Eqn. (xxviii), the activation energy can be calculated.

 Table S1: The characteristics kinetic fitting parameters of conductance transients at

 different operating temperature and concentration of butanol

Temp.	Conc. (ppm)	G ₀ (S)	G ₁ (S)	G ₂ (S)	$\tau_1(s)$	$\tau_2(s)$
275 °C	100	5.102E-8	1.884E-7	-	30.46	-
	250	2.973E-8	3.049E-7	-	35.11	-
	500	4.202E-8	3.666E-7	-	47.98	-
	1000	1.026E-7	6.065E-7	-	80.26	-
300 °C	100	8.462E-8	3.614E-7	-	74.68	-
	250	5.882E-8	1.039E-6	-	83.06	-
	500	1.942E-7	1.438E-6	-	95.15	-
	1000	7.534E-8	2.129E-6	-	139.47	-
325 °C	100	4.158E-8	7.882E-7	-3.391E-8	32.48	13.60
	250	2.403E-7	1.743E-6	-2.053E-7	39.67	909.09
	500	2.623E-7	3.043E-6	-1.241E-7	53.28	192.30
	1000	2.454E-7	5.669E-6	-1.903E-7	100.00	833.33
350 °C	100	1.332E-7	1.187E-6	-2.260E-7	27.55	769.23
	250	1.219E-7	2.294E-6	-2.464E-7	34.32	344.82
	500	1.234E-7	4.971E-6	-1.432E-8	39.97	112.36
	1000	1.244E-7	1.099E-5	-3.680E-7	70.17	344.82