## **Supplementary Information**

## Enhanced NH<sub>3</sub> and NO Sensing Performance of Ti<sub>3</sub>C<sub>2</sub>O<sub>2</sub> MXene by biaxial strain: Insights from First-Principles Calculations

Satchakorn Khammuang<sup>1</sup>, Kantaphong Wongphen<sup>1</sup>, Tanveer Hussain<sup>2</sup>, and Komsilp Kotmool<sup>1\*</sup>

<sup>1</sup>College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Tel: 66 2329 8264; E-mail: <u>komsilp.ko@kmitl.ac.th\*</u>

<sup>2</sup> School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia



**Fig. 1S** Phonon dispersion curves of  $Ti_3C_2O_2$  at strains of -2% and 4% represented by panel (a), and (b), respectively.



**Fig. 2S** Top and side views of the possible adsorption sites of CO and NO on  $Ti_3C_2O_2$ . The azure, brown, red, and grey balls represent the Ti, C, O, and C or N of gases, respectively. The yellow-highlighted area in the top view clearly indicates the position of the gases.



Fig. 3S Top and side views of the possible adsorption sites of  $NH_3$  on  $Ti_3C_2O_2$ . adsorption site configuration on  $Ti_3C_2O_2$  surface. The azure, brown, red, blue, and pink balls represent the Ti, C, O, N, and H, respectively.

|        | Gases           | Species | States |      | Charge (a) |
|--------|-----------------|---------|--------|------|------------|
|        |                 |         | S      | p    | Charge (e) |
| Before | СО              | С       | 1.68   | 1.90 | 0.42       |
|        |                 | 0       | 1.84   | 4.57 | -0.42      |
|        | NH <sub>3</sub> | N       | 1.75   | 4.49 | -1.23      |
|        |                 | Н       | 0.59   | -    | 0.41       |
|        |                 | Н       | 0.59   | -    | 0.41       |
|        |                 | Н       | 0.59   | -    | 0.41       |
|        | NO              | Ν       | 1.80   | 3.07 | 0.13       |
|        |                 | 0       | 1.84   | 4.29 | -0.13      |
| After  | СО              | С       | 1.66   | 1.95 | 0.39       |
|        |                 | 0       | 1.84   | 4.53 | -0.37      |
|        | NH <sub>3</sub> | N       | 1.68   | 4.32 | -1.00      |
|        |                 | Н       | 0.65   | -    | 0.35       |
|        |                 | Н       | 0.65   | -    | 0.35       |
|        |                 | Н       | 0.65   | -    | 0.35       |
|        | NO              | N       | 1.79   | 2.97 | 0.24       |
|        |                 | 0       | 1.84   | 4.20 | -0.05      |

Tabel 1S The Mulliken charge analysis of CO, NH<sub>3</sub>, and NO before and after adsorption on  $Ti_3C_2O_2$ .



Fig. 4S Electronic density of state (TDOS) and electron differences density (EDD) of (a, b)  $NH_3$  adsorbed on  $Ti_3C_2O_2$  at 4% strain and (c, d) NO adsorbed on  $Ti_3C_2O_2$  at -2% strain.



Fig. 5S Electrostatic potentials of toxic gas molecules adsorption on  $Ti_3C_2O_2$  under biaxial strain -2% to 4%.