Supporting Information

The allosteric regulation mechanism on the catalytic activity of

fructosyltransferase studied by molecular dynamics simulations

Chaofan Yu¹, Yanqi Liu^{1,2}, Liang Fu², Zhengyu Shu¹, Mojie Duan^{2*}, Yi Zheng^{1,3*}

1 College of Life Science, Fujian Normal University, Fuzhou 350108, China

2 NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy Wuhan University of Science and Technology Wuhan 430081, China

3 National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China

Corresponding authors

Yi Zheng, <u>eyizheng@fjnu.edu.cn</u> Mojie Duan, <u>mduan@wust.edu.cn</u>; <u>mjduan@wipm.ac.cn</u>

Figure S1. Mechanism of action of fructosyltransferases to generate oligofructose (FOS) by hydrolysis of sucrose as a substrate interacting with trans-fructosylation.

Figure S2. Schematic representation of the QU10-FTase structure.

Figure S3. Schematic representation of the three key catalytic sites of QU10-FTase

Figure S4. QU10-FTase sequence was compared with the FT sequence of Aspergillus japonicus.

Figure S5. The principal component analysis of QU10-FTase related to the Fe_3O_4 interfaces. The different panel figures are corresponding to the systems in Figure 2.

Figure S6. Conformational changes of QU10-FT in different postures at different time points. (A). The conformations of QU10-FT N&C away at 200ns, 400ns, 600ns, 800ns, and 1000ns, respectively. (B). QU10-FT N&C close conformations at 200ns, 400ns, 600ns, 800ns, and 1000ns, respectively. (C). QU10-FT pocket-C down conformations at 200ns, 400ns, 600ns, 800ns, and 1000ns, respectively. (D). The conformation of QU10-FT pocket-N down at 200ns, 400ns, 600ns, 800ns, 8

Figure S7. Distance between the center of mass of the β -strand and the Fe₃O₄ surface of QU10-FT's 347-349 in three repetitions of the simulation as a function of time.

Figure S8. Conformational changes over time for three repetitions of the simulation.

Figure S9. Relative enzyme activities of QU10-FTase and main chain RMSF curves under different temperature conditions.

Figure S10. The dynamic correlation-coefficient (DCC) analysis of QU10-FTase under different temperature. (A) 313K; (B) 318K; (C) 323K; (D) 328K; (E) 333K; (F) 338K. The Cα atoms of residues were utilized in the analysis.

Table 51. Lo potential parameters and worse bond parameters for regot							
ionic	ε (eV)	σ (Å)	De(eV)	α (Å-1)	r0 (Å)	q (C)	
Fe ²⁺	0.019584	3.900	3.637717	0.621504	2.350	1.251	
Fe ³⁺	0.000741	2.664	8.379944	0.518692	2.333	1.611	
O ²⁻	0.003400	3.627					

Table S1. LJ potential parameters and Morse bond parameters for Fe₃O₄

exposure probability	contact site			
	47A 59N 60G 101D 102L 103N 116D 131N 133L 144L 145P 146I 150I			
1%~20%	151P 153T 155G 156S 165S 167G 169S 170N 174L 176Q 303V 304P 374E			
	377E 378Q 379A 381G 382F 383P 387Q			
20%~40%	107Q 118V 143F 172T 173K 305Q 380E 385N 388N			
40%~60%	61Q 83H 86S 110V 111P 113G 166D 384T			
60%~80%	104Q 105G 117P			
>80%	84D 85G 106N 112G 114I 175D 386Q			

Table S2. Contact sites and contact probabilities between QU10-FTase residues and $Fe_3O_{4.}$