
Section S1. Additional tables

Table S1. Thermodynamic functions of gases in various states
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Table S2. Working formulas and some notations
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Table S3. Formulas for calculating changes in temperature, pressure, energy and entropy during reversible mixing of gases under various conditions
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Section S2. Entropy of perfect gases
As is known, the additivity of thermodynamic quantities occurs due to the neglect of the 

interaction of individual macroscopic parts of the body. For any mixture of substances (at the 
molecular level), for example, liquids or real gases, the thermodynamic quantities will not be 
equal to the sums of the corresponding quantities of the individual components. An exception is 
a perfect gas, since the interaction of its molecules, by definition, can be neglected. Thus, the 
entropy of a mixture of perfect gases is equal to the sum of the entropies of each of the gases that 
occupy a volume equal to the volume of the mixture and behave as if there were no other gases.

You can mix two different gases in different ways, but the change in entropy will be the 
same, since entropy is a function of state, and its change is determined only by the final and 
initial states. The same is true, of course, for any other state functions. Let us obtain a formula as 
a function of temperature and volume for the entropy of a perfect gas consisting of a fixed 
number N of particles of the same type. We start from the fundamental equation dU = TdS –
 PdV, that describes the change in the internal energy of any closed system with a reversible 
change in the natural variables of a given thermodynamic property. Since according to (2) 
dU(id) = CVdT, P = NT/V, we have (id  ideal):
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Integrating this expression, we find:
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It would be more correct to rewrite expression (4) in the form
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where S0 – entropy of a gas having a temperature T0 and occupying a volume V0.
It is easy to see that formulas (S2) and (S3) do not correspond to the third law of 

thermodynamics, according to which the entropy of any equilibrium body tends to zero at T  0. 
Indeed, no choice of the integration constant S0 can obtain the required result. It would be 
possible to get rid of negative entropy values by unlimitedly increasing the volume of gas, but 
this still does not make it possible to establish a specific additive constant. The reason is the 
same  as the absolute temperature tends to zero, the gas inevitably becomes quantum and then 
degenerate, and equation (1), used in deriving formulas (S2) and (S3), loses its validity. 
Calculating entropy taking into account quantum behaviour leads to agreement with the third 
law. To illustrate, we present expressions for the entropy of an almost degenerate Fermi gas of 
particles with spin ½, for example, an electron gas or a gas consisting of alkali metal atoms with 
an odd sum of atomic weight and atomic number, and an almost degenerate Bose gas with zero 
spin, for example, helium [14]:
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Here m is the particle mass. As it can be seen, in both cases the entropy in the state of complete 
degeneracy (T = 0) is zero.

The calculation of the entropy of a perfect gas, as well as its other thermodynamic 
quantities, begins in statistical thermodynamics with the calculation of the molecular sum Q over 
the states of gas particles. The contribution of translational motion, which can always be 
separated from the contributions of the internal degrees of freedom of the particle, is most 
convenient and easiest to calculate within the framework of classical statistics, replacing the sum 
with a statistical integral:
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This can be done because the translational motion of a particle in a volume of macroscopic 
dimensions is always quasi-classical. Integration is performed over all possible values of the 
components of momentum and particle coordinates. Due to the independence of particles, the 
sum over the states Z of the entire gas must contain the multiplier QN.

It is very important that the statistical integral does not take into account the physical 
identity of the states resulting from any rearrangement of particles. Formally, these states are 
described by different points in the phase space of the system, that is, they are different classical 
states. Meanwhile, each state in a sum or integral Z must be taken into account only once. 
Therefore, it is necessary to artificially divide the product of statistical sums by the total number 
of permutations of identical particles. If a gas consists of particles without internal degrees of 
freedom, but having a spin moment with quantum number s, then each energy level of 
translational motion receives an additional degeneracy with multiplicity g = 2s + 1, therefore the 
factor g should be introduced into the expression for Z. As a result we have
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It is equally important to note that with a completely quantum approach, the factor N! is taken 
into account automatically, since rearranging indistinguishable particles does not change the 
state.

With that said, the quasi-classical approach yields the following expression for the 
Helmholtz energy:
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In the last formula, term containing the volume is separated, then f is a function of temperature 
only, which will be known if the partition function Qin associated with the internal degrees of 
freedom is calculated. If there are no such degrees of freedom, then Qin = 1, and we are dealing 
with a gas of “elementary particles” with three translational degrees of freedom. In this case of 
interest to us
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The quantity VQ is called quantum volume. Its visual physical meaning is that in order of 
magnitude it is equal to the volume of a cube with an edge equal to the de Broglie wavelength of 
the particle. For example, at T = 300 K for neon VQ  1032 m3. It is convenient to express the 
condition for the applicability of the quasi-classical approximation through the quantum volume:
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At atmospheric pressure and room temperature N/V ~ 1025 m3, the left side of the 
inequality is of order 10−7, so the condition is well satisfied. That is, the gas is in the Boltzmann 
regime, which corresponds to a perfect gas. For neon with an atomic concentration of 1025 m3, 
this regime occurs at T  0.007 K.

For the entropy of a perfect gas we obtain
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The prime indicates the derivative with respect to temperature. At a fixed T, formula (S10) gives 
the dependence of entropy on the volume concentration N/V of particles in the gas.

Section S3. Accuracy of additivity of partial pressures of rarefied gas 
components

In this section, we use the practical units of entropy (JK1) and temperature (K), measure 
the amounts of substances ni in moles, and by xi we mean the mole fraction of component i of the 
gas mixture. We consider an equilibrium mixture of gases that individually obey equation (14) of 
the main text. It is convenient to describe the thermodynamic properties of the mixture in the 
variables T and P, then the Gibbs energy G, for which these variables are natural, should be 
taken as the initial value. In these variables, property G is a characteristic function from which 
any other thermodynamic property can be calculated. Our goal is to estimate how much the 
entropy of a real mixture differs from the entropy of a mixture of perfect gases SB = S1B + S2B.

The Gibbs energy of any binary system is expressed through the chemical potentials of the 
components by the relation

. (S11)2211  nnG

The chemical potentials of a real gas, according to Lewis, are expressed by the same formula as 
for a perfect gas, but with pressure Pi replaced by fugacity fi:
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where i = fi/Pi are the fugacity coefficients, i is the chemical potential of gas i in the standard 
state, which is taken to be a perfect gas under a pressure of 1 bar = 105 Pa. Since the first two 
terms in (S12) constitute the chemical potentials iB of gases in a perfect state, this expression 
can be rewritten as
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To characterize the composition of a binary mixture, one variable x2 = x is sufficient, then 
x1 = 1  x. After passing to the molar Gibbs energy Gm, instead of (S11) we obtain
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Substituting expressions (S13) into (S14) and moving the terms related to the perfect gas to the 
left, we will have the excess Gibbs energy:
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Differentiating (S15) by temperature, we find the excess entropy
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We emphasize that in all formulas relating to a mixture of gases (exact thermodynamic 
expressions), i and i mean the actual chemical potentials and volatilities. These values, 
generally speaking, differ from those for individual (pure) gases with the same pressure and the 
same temperature. However, these differences are of a higher order of smallness compared to the 
accuracy of the equation of state (14). Therefore, for our estimates we can safely use the fugacity 
coefficients of individual gases.

Values 1 and 2 can be determined from the equation of state using the well-known 
formula [16]
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The function Z = PVm/RT (compression factor) is the expression in parentheses in the virial 
equation (14). For a perfect gas Z = 1. For our real gas Z  1= NB/V = nRB/V. To use (S17), it is 
necessary to express Z in terms of pressure and temperature. For an accuracy corresponding to 
equation (14), it would be sufficient to take the ratio N/V from the equation of state of a perfect 
gas, and then we would put Z  1 = PB/T. But for methodological purposes, we will carry out 
calculations with excessive accuracy, expressing N/V =  from equation (14). To do this, you 
need to solve the quadratic equation
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The solution, which has physical meaning, is
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For a sufficiently rarefied gas, BP/T  1, and since (1 + )1/2  1 + ½ at   1, expression (S19) 
becomes N/V = P/T. Thus,
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If we take into account that ln(1 + )   at   1, then in a more “correct” (less accurate) 
approximation ln  BP/T.

To calculate the terms in (S16) containing the temperature derivative, we use the well-
known relationship between the coefficient B and the van der Waals parameters a and b: 
B = b + a/T (see Section 4 of the main text). Then we get
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Numerical results for neon and argon, obtained using formulas (S20), (S21) at 300 K and a 
pressure of 0.5 atm, are presented in Table S4.
Table S4. The fugacity coefficients of two rarefied gases, calculated with different accuracies

Gas Quantity Excessive precision Adequate accuracy

ln1 0.000520662 0.000520797

1 1.000520797 1.000520933Neon

T(ln1/T)P 0.000694199 0.001389120

ln2 0.001761321 0.001762871

2 1.001763873 1.001764426Argon

T(ln2/T)P 0.002867037 0.005744164

Calculation using formula (S16) for an equimolar mixture of neon and argon at a total 
pressure of 1 atm leads to the result SE = 0.00531785 JK1. Comparison with the entropy of 
mixing S =  5.29330 JK1, obtained without taking this correction into account, suggests that 
the additivity approximation is legitimate.

Section S4. Selected information about quantum gases
The name "quantum gases" implies a deviation from an ideal (Boltzmann) gas due to 

quantum effects. These effects are not directly related to the quantum nature of the motion of 



individual particles. Indeed, translational motion remains quasi-classical, since the particles 
move in a macroscopic volume. Thermodynamic differences between gases are determined by 
restrictions imposed on the placement of identical particles in states. The prohibition for 
fermions to occupy a certain state by more than one particle, and vice versa, the possibility of 
placing any number of particles in one state for bosons, represents a specific type of interaction  
an exchange effect, which ultimately follows from the symmetry properties of the wave function 
describing a gas of indistinguishable particles.

In conditions where gases have to be considered as quantum, particles can almost always 
be considered elementary, i.e., those that lack internal degrees of freedom. Therefore, states 
should be understood as wave functions of the translational motion of a particle. It is necessary, 
however, to take into account the spin s of the particle, which increases the statistical weight of 
all states by 2s + 1 times.

To find the Fermi and Bose distributions, it is easiest to apply the grand canonical Gibbs 
distribution to gas subsystems that are a set of particles in a certain quantum state (with number 
k). The k-potential of the subsystem, containing nk particles, is found from the sum over the 
states. The energy of the subsystem is nkk, therefore
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where  is the chemical potential of the gas. For a Fermi gas nk = 0, 1, therefore
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From here we find the average filling numbers using the thermodynamic method ( = e/T):
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This is the Fermi  Dirac distribution. The chemical potential  depends on the temperature. At 
T = 0 it takes the value (0) = F, which is called the Fermi energy. If k > F, then the occupation 
numbers are 0. If k < F, then they become 1. The Fermi gas in this state is completely 
degenerate.

In the case of a Bose gas, the occupation numbers can be any. Calculating the statistical 
sum is elementary, since the series under the logarithm sign in (S22) is a geometric progression, 
the summation of which yields
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In the same way as before, we find the average filling numbers:
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The resulting function is the Bose  Einstein distribution.
For a gas consisting of elementary particles or particles whose internal state does not 

change under given conditions, the energy of a particle is reduced to the kinetic energy of 
translational motion  = p2/2m, which is always quasi-classical in a volume of macroscopic 
dimensions. Accordingly, in the energy distribution function, the index k must be omitted, and in 
the formulas, we must switch from summation to integration. Let us write out all three functions:
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Fermi  Dirac, (S28)
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Bose  Einstein. (S29)
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The transition from summation to integration is carried out as follows. The number of 
particles dN in the energy interval d is found by multiplying the distribution function by the 
number of states falling on the given interval:
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Here D() is the density of states at a given energy, D()d is the total number of states in the 
interval d. The product f()D()d is the number of occupied states. Using the quasi-classical 
nature of translational motion, we find the number of states in the element of the phase space 
d3pdV of the particle:
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where g = 2s + 1. Since d3p = 4p2dp, where p is the momentum, then integrating over the 
volume and expressing the momentum through energy, we obtain
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Thus, the density of states of a particle on the energy scale is
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As we can see, for a monatomic ideal gas in volume V, the replacement of summation over 
quantum states k by integration over energy  is carried out according to the rule
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Substituting (S33) into (S30), we obtain the particle energy distribution:
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The total number of particles in the gas is found by integrating (S35) over d:
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Let us rewrite this equality as follows:
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The energy of the gas is obtained by integrating expression (S35) multiplied by :
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It is impossible to calculate the energy in analytical form, since the integral contains  as a 
parameter, which itself depends on temperature and volume.

Consider a Fermi gas at absolute zero temperature, when it is completely degenerate. In 
this case, there is an upper occupied energy level F (the Fermi energy), below which all states 
are filled and above which they are vacant. For a fixed volume, the maximum energy F is 
determined by the number of electrons in the gas.

The number of states with the absolute value of the particle momentum in the interval 
between p and p + dp is equal to
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Equating the number of particles filling all states with moments from zero to pF to the number N, 
we obtain
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from where we find the maximum value of the impulse
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At T = 0, the electrons in momentum space fill a sphere of radius pF. A sphere of this radius is 
called the Fermi surface. From (S40) using the formula F = pF

2/2m, we obtain an expression for 
the Fermi energy:
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The total energy of the gas can be obtained by multiplying the number of states (S38) by 
p2/2m and integrating over all moments:
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After substituting here (S40) we arrive at the expression
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Using the equation PV = 2U/3, which is valid for quantum gases, we find the gas pressure:
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Thus, the pressure of the Fermi gas at absolute zero temperature is proportional to the particle 
concentration to the power of 5/3.



The chemical potential of a Fermi gas at T = 0 ((0 = F) is expressed by formula (S41). In 
the next approximation, this value begins to depend on temperature. The dependence (T) is 
determined by equation (S36), which for a Fermi gas can be rewritten as

, (S45)N
e

dD
T 







0

/)( 1
)(

where D() = aV1/2 is the density of states. The number of electrons in the gas is constant, so for 
the integral to have a fixed value,  must change with temperature. The difficulty is that the 
exact solution cannot be written in analytical form and one has to resort to numerical calculations 
or successive approximations.
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