
S1

Electronic Supplementary Information for

Proton Transport in Liquid Phosphoric 

Acid: The Role of Nuclear Quantum Effects 

Revealed by Neural Network Potential

Pei Liu, Wei Li*, and Shuhua Li*

Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science 

Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 

210023, People’s Republic of China

* Corresponding author, E-mail: Shuhua Li: shuhua@nju.edu.cn, Wei Li: wli@nju.edu.cn

S1. DFT Calibration

Figure S1. Convergence test for grid spacing in CP2K density functional theory (DFT) 
calculations. The y-axis represents the relative single-point energy, calculated as the 
difference between the single-point energy and the average single-point energy across 
various grid spacings.

Supplementary Information (SI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2025

mailto:shuhua@nju.edu.cn
mailto:wli@nju.edu.cn


S2

Table S1. Convergence test of grid cutoff in CP2K DFT calculations. The cutoff values 
are presented in Rydberg (Ry), and the energies are given in atomic units (a.u.).

Cutoff 450 500 550 600 650 700

Energy -2759.2962 -2759.2944 -2759.2907 -2759.2909 -2759.2901 -2759.2901

In performing density functional theory (DFT) calculations using CP2K, products 
of Gaussian functions are mapped onto real-space grids. The plane-wave cutoff 
parameter determines the grid resolution: higher cutoff values enhance accuracy but 
reduce computational efficiency. To find an optimal balance between accuracy and 
efficiency, we conducted a convergence test on the plane-wave cutoff. Our results show 
that at a cutoff of 550 Ry, the energies converge to within 0.1 meV/atom. Consequently, 
all CP2K calculations in this study were performed using a cutoff of 550 Ry.

S2. Dataset Statistics and MLP Performance Calibration

Figure S2. Distribution of phosphoric acid molecules and ions in the liquid phosphoric 
acid dataset.

Figure S2 compares the proportions of five different species within the complete 
dataset. It is evident that neutral H₃PO₄ molecules dominate the samples generated by 
active learning, comprising 69.19% of the dataset. The proportions of H₂PO₄⁻ and 
H₄PO₄⁺ are nearly equal, at 15.57% and 14.90%, respectively. This distribution aligns 
with the characteristic electrical neutrality of liquid phosphoric acid, suggesting that 
only the first ionization has taken place in the simulated environment. In contrast, the 
presence of HPO₄²⁻ is minimal, constituting just 0.34% of the dataset, which implies 
that the second ionization reaction is limited. Furthermore, PO₄³⁻ is virtually absent, 
indicating that the third ionization reaction occurs at an extremely low frequency 
throughout the active learning simulation.
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Figure S3. Linear regression plot comparing atomic forces predicted by PBE0-NN to 
reference data from the test set. Blue points represent the distribution of predicted 
versus reference values, while the red solid line indicates the linear regression fit of the 
data.

Table S2. Mean Absolute Error (MAE) values for total energy (meV/atom), atomic 
forces (meV/Å), and atomic charges (e), along with the coefficient of determination 
(R²) for atomic forces.

MAE
Datasets

Energy Force Charge
R² of Force

Training 0.205 35.25 0.003 0.998

Validation 0.196 35.21 0.003 0.998

Test 0.238 35.13 0.003 0.998

The linear regression results comparing predicted and reference atomic forces for 
liquid phosphoric acid structures in the test set, as calculated using the PBE0-NN 
model, are shown in Figure S3. The coefficient of determination (R²) for predicted 
atomic forces exceeds 0.998, indicating a high level of accuracy. Detailed mean 
absolute error (MAE) values for these predictions are provided in Table S2.
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S3. Computational Resources

Figure S4. Comparison of radial distribution function (RDF) plots from PBE0-NN MD 
simulations of liquid phosphoric acid in cubic boxes of various sizes.

Table S4. Computational time (in seconds) for PBE0-NN-based MD and RPMD 
simulations on CPU and GPU, compared to DFT calculations.

Methoda 304 atoms 728 atoms 1008 atoms
DFT MD 1345.9 3556.3 5756.3
NN MDb 0.54 / 0.09 1.28 / 0.14 1.70 / 0.17

NN RPMDb 6.86 / 1.02 18.88 / 1.77 24.69 / 2.29
aAll CPU-based simulations and DFT calculations were performed on an AMD EPYC 
7443P 24-Core Processor, while all GPU-based simulations were conducted using a 
Tesla V100-SXM2-16GB.
b The time values before and after the slash correspond to CPU and GPU, respectively.

MD and RPMD simulations were performed using the PBE0-NN model on three 
cubic simulation boxes of varying sizes at 333.15 K to evaluate the average 
computational time. The MD simulations were conducted for 100 ps, while the RPMD 
simulations were carried out for 500 steps. For the periodic structure with 304 atoms, 
the PBE0-NN model demonstrated a speedup of approximately 2,400 times compared 
to DFT calculations on the same hardware, and for the 1008-atom structure, the speedup 
was about 3,400 times. The simulation time per step for RPMD is slightly greater than 
the MD time multiplied by the number of beads (12).

To provide a reference for future work, we estimated the time required to construct 
the dataset and train the ML models. The dataset consists of 4,947 liquid phosphoric 
acid structures. On average, DFT calculations for individual structures take 0.51 hours 
of wall time on an Intel Xeon Gold 6126 CPU (2.60 GHz, 24 cores). Nine rounds of 
active learning were performed, and 40 PBE0-NN models were trained. Each model 
took approximately 14.4 hours to train on a Tesla V100-SXM2-16GB. The training 
time for the Qeq-NN model was very short, as it converged quickly during the active 
learning iterations.


