Supplementary Information

Stacking induced symmetry broken and gap opening in Dirac half-metal MnF₃

Wentai Xiang, Baozeng Zhou*

Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

*Corresponding Authors

baozeng@tju.edu.cn (B. Zhou)

System	This work (E_f)	OQMD data ¹
MnF ₃	-1.93 eV	-2.74 eV
MnF ₄	-1.78 eV	-2.49 eV
Mn ₂ F ₅	-2.13 eV	-2.69 eV

Table. S1 Calculated formation energies of MnF_3 , MnF_4 and Mn_2F_5 along with this work and QOMD data.

1 S. Kirklin, J. E Saal, B. Meredig, A. Thompson, J. W Doak, M. Aykol, S. Rühl and C. Wolverton, *npj Computational Materials*, 2015, 1, 15010.

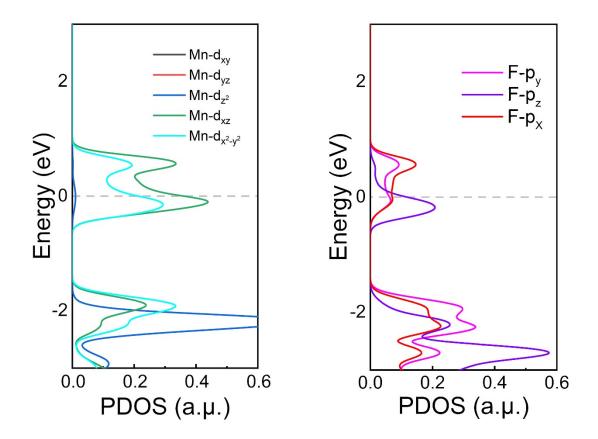


Fig. S1. PDOS of the spin-up channel in monolayer MnF_3 .

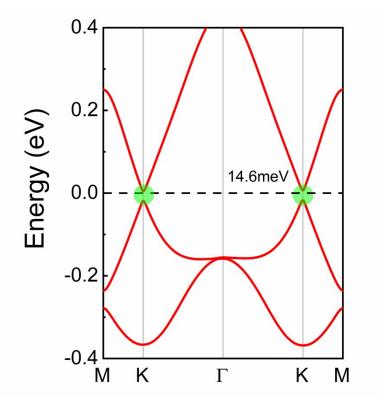


Fig. S2 Band structure of the spin-up channel in monolayer MnF_3 with considering SOC.

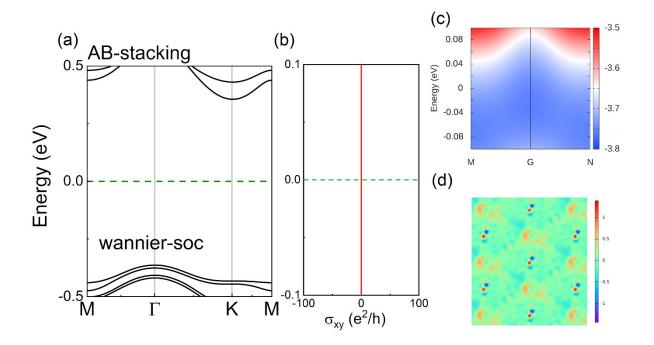


Fig. S3 (a) Band structure of AB-stacking MnF₃ bilayer calculated using the MLWFs method with SOC. (b) The corresponding anomalous Hall conductivity (σ_{xy}) , (c) edge state of a semi-infinite sheet, and (d) the Berry curvature with SOC.

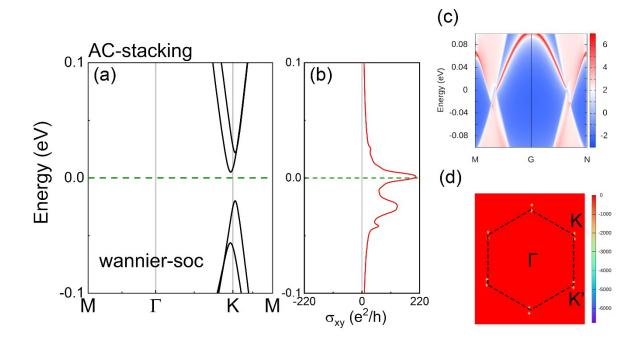


Fig. S4 (a) Band structure of AC-stacking MnF₃ bilayer calculated using the MLWFs method with SOC. (b) The corresponding anomalous Hall conductivity (σ_{xy}) , (c) edge state of a semi-infinite sheet, and (d) the Berry curvature with SOC.