Supporting Information

Prediction of high-*T*_c superconductivity in H₆SX under submegabar pressure

Xinyi Gu,¹ Kun Gao,¹ Jian Hao,¹ Jingming Shi,¹ Wenwen Cui,^{1, *}and Yinwei Li^{1‡}

¹ Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China

> * Email: wenwencui@jsnu.edu.cn [‡] Email: yinwei_li@jsnu.edu.cn

FIG. S1 Energy Electron-phonon coupling constant $\lambda(q)$ as a function of the-Gaussian broadening σ for H₆SCl at $\mathbf{q} = (0, 0, 0)$ at c200 GPa. We believe that 12×12 ×12 *k*-meshes are converged in H₆SCl.

FIG. S2 Electronic band structure and DOS (states/eV/f.u.) of (a) $Pm\overline{3}m$ -H₆SP at 200 GPa, (b) $Pm\overline{3}m$ -H₆SBr at 200 GPa, (c) Cmmm-H₆SC1 at 200 GPa and (d) Cmmm-H₆SBr at 200 GPa.

FIG. S3 Electronic band structure and DOS of (a) $Fd\overline{3}m$ -H₆SBr at 200 GPa, (b) $Fd\overline{3}m$ -H₆SI at 200 GPa, and (c) $Fd\overline{3}m$ -H₆SCl at 200 GPa.

FIG. S4 Electronic band structure and DOS of (a) $Fd\bar{3}m$ -H₆SAs at 200 GPa and (b) $Fd\bar{3}m$ -H₆STe at 200 GPa.

FIG. S5 Electronic band structure and DOS of (a) *Cmmm*-H₆SCl at 130 GPa and (c) $Fd\overline{3}m$ -H₆STe at 100 GPa.

FIG. S6 Phonon spectra, phonon density of states, Eliashberg phonon spectral function $\alpha^2 F(\omega)$, and the electron-phonon integral λ for (a) $Pm\overline{3}m$ -H₆SP at 200 GPa, (b) *Cmmm*-H₆SBr at 200 GPa, (c) *Cmmm*-H₆SCl at 200 GPa and (d) $Fd\overline{3}m$ -H₆SCl at 200 GPa.

FIG. S7 Phonon spectra, phonon density of states, Eliashberg phonon spectral function $\alpha^2 F(\omega)$, and the electron-phonon integral λ for (a) $Pm\overline{3}m$ -H₆SBr at 200 GPa, (b) $Fd\overline{3}m$ -H₆SBr at 200 GPa and (c) $Fd\overline{3}m$ -H₆SAs at 200 GPa.

FIG. S8 Phonon spectra, phonon density of states, Eliashberg phonon spectral function $\alpha^2 F(\omega)$, and the electron-phonon integral λ for (a) $Fd\bar{3}m$ -H₆STe at 200 GPa and (b) $Fd\bar{3}m$ -H₆SI at 200 GPa.

FIG. S9 Phonon spectra, phonon density of states, Eliashberg phonon spectral function $\alpha^2 F(\omega)$, and the electron-phonon integral λ for (a) *Cmmm*-H₆SCl at 130 GPa and (b) *Fd* $\overline{3}m$ -H₆STe at 100 GPa.

FIG. S10 Enthalpy difference vs pressure for (a) H_6SSb , referenced to the decomposition enthalpy into H_6SSb . The decomposition enthalpies into Sb + S + 6H, $Sb+H_2S+4H$ and $H_3S+Sb+3H$ were also plotted, respectively. (b) H_6SSn , referenced to the decomposition enthalpy into H_6SSn . The decomposition enthalpies into Sn + S + 6H, $Sn+H_2S+4H$, $H_3S+Sn+3H$ and SnH_4+H_2S were also plotted, respectively.

FIG. S11 the total free energy as a function of the ab initio molecular dynamics (AIMD) simulation time at 300 K under 200 GPa. The inset presents the structure snapshots of $Fd\overline{3}m$ H6SSb at 0 and 10 ps, respectively.

FIG. S12 Calculated electron localization function (ELF) of (a) $Fd\bar{3}m$ -H₆SSb at 200 GPa, (b) $Fd\bar{3}m$ -H₆SSb at 40 GPa, (c) $Fd\bar{3}m$ -H₆SSn at 200 GPa and (d) $Fd\bar{3}m$ -H₆SSn at 40 GPa.

FIG. S13 Calculated anisotropic superconducting gap of H₆SSb in the $Fd\bar{3}m$ structure at 40 GPa.

S	Η	Sn	Р	As	Sb	Te	Cl	Br	Ι
s ² p ⁴	\mathbf{S}^1	s ² p ²	s ² p ³	s ² p ³	s ² p ³	s ² p ⁴	s ² p ⁵	s ² p ⁵	s ² p ⁵

Table. S1 The valence electrons of the atoms