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S1. Sensitivity of van der Waals interactions

S1.1. van der Waals forces

To compute the effective van der Waals forces, FvdW , of a cluster acting
on a singular particle, the London-van der Waals equation for two identical
spheres was extended to include every particle within a cluster of N particles,
shown in Eq. (S1).
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Here, AH is the Hamaker constant, Dp is the particle diameter and γi
denotes the ratio of surface distance di between the singular particle and
particle i within the cluster to the particle diameter:

γi =
di
Dp

(S2)

To compute di, we need to account for the position of each particle in
the cluster, relative to the singular particle. To simplify, we consider linear
strings of particles to represent the closest particles in a fractal structure.
For the purposes of establishing the effective van der Waals forces between a
single particle and a cluster, we consider two extreme cases, as demonstrated
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in Fig. S1. The distance between particle A and the closest particle within
the linear cluster (#1) is the same as the distance between particle B and the
closest particle in the cluster (#3), however the distances between the other
particles all differ, making the collective force acting on particle B larger.

Figure S1: Particle-cluster configurations as considered for predicting effective van der
Waals forces.

For the extreme cases considered in this study, di is computed as per
Eq. (S3).
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(S3)

Here, d0 denotes the surface distance to the singular particle and the clos-
est particle in the cluster and λ takes values of 0 or 1 for clusters consisting
of even and odd numbers of particles, respectively. Note that the computed
surface distances for perpendicular clusters is only valid for clusters contain-
ing an odd number of particles and the singular particle is always located in
the middle of the cluster, slightly overestimating the effective van der Waals
force. Finally, we need to account for the angle at which individual particles
within the cluster pull on the singular particle. Since we always consider
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the singular particle to be located at the center of the string, the sideways
components of the forces cancel out and the resulting force can be computed
by multiplying Eq. (S1) by the correction factor αi, where, as per Eq. (S4).
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(S4)

S1.2. Results

Computing the forces acting on a singular particle by all particles within
a cluster comes at a computational cost. Therefore, before we determine the
caption distance in real life aggregation processes, we assess the need to do
so. From Eq. (S1) it is evident that van der Waals forces scale with both
current cluster size and surface distance between each particle within the
cluster and the single particle. However, its extreme sensitivity with respect
to surface distance may result in the effect of the particle within the cluster
with the smallest surface distance to outweigh even the collective effect of all
others. This can easily be shown to be true in extreme cases, as the ratio
between the surface distance of the closest particle in the cluster and any
other particle, Q, can be computed as:

Q =
ri
r0

=
r0 + xi

r0
(S5)

Where r0 and ri are the distances to the closest particle and particle i
respectively and xi describes the absolute difference between them. Since
xi > 0, it is obvious that limr0→0Q = ∞, meaning only the closest par-
ticle within the cluster is relevant upon close proximity. Furthermore, at
limr0→∞Q = 1, so at large distances, all particles become relevant. As
demonstrated in Section S1.2 and Section S1.2, this is indeed the case for
both parallel and perpendicular configurations. For these figures the nor-
malized vdW forces are defined as the force acting on a cluster of a given
number of particles divided by the force exerted by the closest particle within
the cluster:

FvdW,norm =

∑
i FvdW,n=i

FvdW,n=1

(S6)

The solid black line indicates the combination of surface distance and
particles within the cluster where the force induced by the entire cluster
exceeds the one induced by the closest particle within it by 5%. Collectively,
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Section S1.2 and Section S1.2 demonstrate that multiple particles within a
cluster should only be be taken into account when calculating the effective
van der Waals forces on between a singular particle and a cluster when the
cluster consists of many particles or when the distance between cluster and
particle is ≫ 1 nm.

Figure S2: Normalized total forces acting between a singular particle and clusters of various
surface distances and orientations: (a) Normalized van der Waals forces as a function of
the number of particles in a cluster in parallel orientation and the surface distance between
the closest particles within the cluster and a single particle, (b) Normalized van der Waals
forces as a function of the number of particles in a cluster in perpendicular orientation and
the surface distance between the closest particles within the cluster and a single particle,
primary particle size = 10 nm, AH = 1.5 · 10−19J

S2. 2D model

To validate our model, we adjusted it to produce 2D aggregates, which
allowed for comparison of the output with previously published works. In
Fig. S3 and Fig. S4 2D aggregates consisting of 1000 particles are displayed
and compared to those of prior publications. It is evident that our out-
put fully aligns with the one from the prior model, deviations arising from
the stocastic nature of the aggregation process itself. Furthermore, Fig. S5
demonstrates the same results are obtained when computing the fractal di-
mension using the approach by Meakin in the original work.
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Figure S3: 2D aggregates containing 1000 particles produced from by Maekin (left) and
our model (right) with a caption distance of ℓc =1.0

Figure S4: 2D aggregates containing 1000 particles produced from by Maekin (left) and
our model (right) with a caption distance of ℓc =4.0

S3. Additional 3D model output

For the 3D model, we also used the method from prior works to confirm
our finding to not be an artifact of the method to find Df . In Fig. S6, the
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Figure S5: Density-radius correlation functions for various caption distances, obtained by
2D models. Left: Maekin, right: our model. Aggregates consisted of 5000-8000 primary
particles. The dashed lines in both figures have a slope of -1/3

resulting dependencies of density and cluster size are provided. Here it can
be seen that the slopes of curves obtained in 3D structures are indeed not
parallel on the scale we consider. However, as we argue in the manuscript,
this method is somewhat subjective, especially for smaller structures, where
a fully linear zone is not obvious.

In Fig. S7, the coefficients of variation corresponding to Fig. 2a in the
manuscript are provided. For the clusters of 5000 particles considered in the
main text, it can be seen that none of the errors exceed 1%, as indicated by
the dashed line.
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Figure S6: Density-radius correlation functions of 3D clusters, produced at various caption
distances
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Figure S7: Coefficients of variation corresponding to sets of clusters produced under iden-
tical conditions. The horizontal dashed line indicates a value of 0.01
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