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1. 4´4 Transfer Matrix Method

In the case of incident circularly polarized waves, the propagation features of both 
handednesses can be readily calculated using the 4×4 TMM. Denoting the total matrix as M, the 
relationship between the fields before and after the MS can be expressed as [1, 2]:
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where the subscripts + and - represent LCP and RCP waves, respectively, while i, r, and t denote 
the incident, reflected, and transmitted components. For an MS with a total of J dielectric layers as 
shown in Eq.(2), the matrix M can be expressed as the product of the dynamical matrix D, which 
is related to the boundaries of the MS, and the characteristic matrices S of the dielectric layers [2]:
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For a layer of WSM, , while for an isotropic dielectric medium with a relative 
 j

d aN    m

permittivity of εj, . , with dj representing the thickness of each 
 j

jN        /j j
jc N d  

dielectric layer and c denoting the speed of EM waves in a vacuum [2]. From this, the 
transmission (t) and reflection (r) coefficients for each component can be calculated as follows [2]:
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Where Mij (i, j = 1, 2, 3, 4) denotes the element in the i-th row and j-th column of the matrix M. 
The transmittance (T), reflectance (R), and absorptance (A):
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2. The Runge-Kutta Optimization Algorithm

Over a century ago, Runge and Kutta introduced the Runge-Kutta method (RKM) for solving 
ordinary differential equations [3]. More than a hundred years later, in 2021, researchers 
developed a new swarm-based model incorporating stochastic components, inspired by the 
principles of RKM, and named it RUN optimizer [3]. 

The optimization process can be broadly divided into the following steps: First, Np positions are 
randomly generated within a population of size Np, which is referred to as the initialization step.

For a minimization problem, xb = xn-Δx is defined as the optimal solution obtained from a single 
iteration, while xw=xn+Δx is defined as the worst solution. The initial values of xb and xw are 
generated from three randomly selected solutions in the population, denoted as xr1, xr2, and xr3, 
where r1 ≠ r2 ≠ r3 ≠ n.

Based on the RKM, k1 can be defined as k1 = (xb-xw)/2Δx, where Δx represents the position 
increment. In the RUN algorithm, however, to enhance exploration and introduce stochastic 
behavior, k1 is redefined as:
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where 
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rand is any number between [0,1], and round(1+rand) indicates selecting either 1 or 2 as an 
integer. Similarly, other coefficients can be defined (for a fourth-order RKM, these are k2, k3, and 
k4):
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Here, rand1 and rand2 are two additional random numbers within the range [0, 1]. For the 
optimization function f(x), the initial values of xb and xw for the next iteration are determined by 
comparing f(xn) with the optimal values of the three initial solutions, denoted as f(xbi). In this work, 
f(x) consists of bandwidths under different CD conditions (definitions detailed in Section 3 in the 
main text). Since the RUN algorithm is more suitable for minimizing values, the bandwidth 
obtained in the calculations needs to be further converted to its opposite number. The core search 
mechanism of the RUN algorithm, based on the fourth-order RKM, is given as follows:
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The search mechanism obtained in this step is used to guide the optimization algorithm in 
determining the direction for global and local searches during iterations. In addition to this, the 
RUN algorithm incorporates a series of complex mechanisms designed to update and improve 
solution quality. These mechanisms primarily depend on the value of the current iteration's rand to 
choose whether to conduct a local search (exploitation) around xc or xm, while simultaneously 
exploring potentially promising regions in the global space (exploration). The specific steps are as 
follows:
if rand < 0.5 (S16)
 (exploration phase)

  1n c c sx x r SF g x SF SM x         

else
 (exploitation phase)

  1 'n m m sx x r SF g x SF SM x         

end
in which 
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φ represents a random number between (0,1), while randn denotes a value drawn from a standard 
normal distribution. xbest and xlbest are used to indicate the best-so-far solution and the best solution 
of the current iteration, respectively. a and b are two constants. The variables i and Maxi refer to 
the current iteration number and the set maximum number of iterations. r can be either 1 or -1, 
altering the search direction, and g is a random number within the range [0, 2].
 To enable each solution to move towards a better position, the average of three random solutions 
(xavg) is used in conjunction with the best solution (xb) to generate a new solution (xnew1). Another 
new solution (xnew2) is generated using the following process:
if rand < 0.5 (S24)
 if w < 1

    2 1 1. .new new new avgx x r w x x randn   
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 else 
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 end
end
where 
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β is a random number selected from the interval [0,1], c = 5×rand, and r is randomly selected from 
the set {-1, 0, 1}. 
 However, the newly generated solution xnew2 is not necessarily better than the existing solution xn. 
Another new solution xnew3 provides an additional opportunity to find a better position by:
if rand < w (S28)

    3 2 2 2. . . .new new new RK b newx x rand x SF rand x v x x      

end
and v = 2×rand. 

In summary, the pseudo-code for RUN is shown in Algorithm 1. For more details on the RUN 
process and a comprehensive explanation, please refer to Ref. [3].

Algorithm 1 The pseudo-code of the RUN algorithm
Input: Np, MaxIt, D

Output: xbest

Stage 1. Initialization

Generate the RUN population Xn(n=1, 2..., Np, including εj, dj, and N)

Calculate the opposite number of the bandwidth (set as the objective function in this work) of each member of 

population 

Determine the solutions xw, xb and xbest

Stage 2. RUN algorithm

while it < MaxIt do 

for i = 1 : Np do

if rand < 0.5 then

exploration phase

else

exploitation phase

end if

Enhance the solution quality 

if rand < 0.5 then

Calculate position xnew2 using Eq.(S24)

if f(xnew2) < f(xn) then

Update xn
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else if rand < w then

Calculate position xnew3 using Eq.(S28)

if f(xnew3) < f(xn) then

Update xn

end if 

end if

end if

Update position xw and xb

end for 

Update xbest 

it = it+1

end while

Stage 3. return xbest

Reference

1 Š. Višňovský, K. Postava and T. Yamaguchi, Czech J Phys., 2001, 51, 917–949.

2 R. Abdi-Ghaleh and A. Namdar, J. Mod. Opt., 2013, 60, 1619–1626.

3 I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu and H. Chen, Expert Syst. Appl., 2021, 181, 115079.


