Supporting Information

Tailoring OER/ORR Activity in TM₁N₄ Catalysts through First-/Second-Shell

Nitrogen Doping: A Density Functional Theory Investigation

Qingqing Cai^a, Wenmei Wuxia^a, HuanHuan Li^a, Can Li^{a,*}, Yinyan Gong^a, Lengyuan Niu^a and

Tao Wang^b

^a Institute of Optoelectronic Materials and Devices, College of Optical and Electronic

Technology, China Jiliang University, Hangzhou 310018, China

^b School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China

Email: canli1983@gmail.com

Simulation Details

The electrochemical model of OER/ORR in alkaline media could be divided into the four one-electron reactions:

$$* + OH^{-} \leftrightarrow OH^{*} + e^{-}$$
 (S1)

$$OH^* + OH^- \leftrightarrow O^* + H_2O(l) + e^-$$
(S2)

$$O^* + OH^- \leftrightarrow OOH^* + e^-$$
 (S3)

$$OOH^* + OH^- \leftrightarrow * + O_2(g) + H_2O(l) + e^-$$
(S4)

where the * denoted the active site. The adsorption energies of intermediates (OH, O and OOH groups) on substrates were calculated by following:

$$\Delta E_{*O} = E(\operatorname{sub}/O) - E(\operatorname{sub}) - [E(H_2O) - E(H_2)]$$
(S5)

$$\Delta E_{*\rm OH} = E({\rm sub/OH}) - E({\rm sub}) - [E({\rm H}_2{\rm O}) - E({\rm H}_2)/2]$$
(S6)

$$\Delta E_{*OOH} = E(sub/OOH) - E(sub) - [2 \times E(H_2O) - 3 \times E(H_2)/2]$$
(S7)

where $E(\text{sub/H}_2\text{O})$, E(sub/OH), E(sub/O) and E(sub/OOH) denoted the total energies of H₂O, OH, O and OOH groups on substrates. E(sub), $E(\text{H}_2\text{O})$ and $E(\text{H}_2)$ were the energies of bare substrate, water, and hydrogen gas, respectively.

The Gibbs free energy changes of steps S1-S4 could be estimated by:

$$\Delta G_1 = \Delta G_{\text{OH}*} \tag{S8}$$

$$\Delta G_2 = \Delta G_{\rm O^*} - \Delta G_{\rm OH^*} \tag{S9}$$

$$\Delta G_3 = \Delta G_{\rm OOH^*} - \Delta G_{\rm O^*} \tag{S10}$$

$$\Delta G_4 = 4.92 \mathrm{eV} - \Delta G_{\mathrm{OOH}^*} \tag{S11}$$

where the sum of ΔG_{1-4} was fixed to the negative of experimental Gibbs free energy of formation of two water molecules ($-2^{\Delta_{H_2O}^{exp}} = 4.92 \text{ eV}$). The Gibbs free energy of (H⁺ + e⁻) in solution was estimated as the half energy of H₂ molecule at standard condition.

The overpotential of OER was determined by following equations:

$$\eta^{\text{OER}} = U_{\text{OER}} - 1.23 \tag{S12}$$

$$U_{\text{OER}} = \text{Max}(\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4)/e$$
(S13)

The overpotential of ORR was expressed as:

$$\eta^{\text{ORR}} = 1.23 - U_{\text{ORR}} \tag{S14}$$

$$U_{\text{ORR}} = \text{Min}(\Delta G_1, \Delta G_2, \Delta G_3, G_4)/e \tag{S15}$$

The proportional relationships between the ΔG_{O*} , ΔG_{OH*} and ΔG_{OOH*} values:

$$\Delta G_{OH^*} = 0.611 \times \Delta G_{O^*} - 0.557 \tag{S16}$$

$$\Delta G_{\rm OOH^*} = 0.510 \times \Delta G_{\rm O^*} + 2.431 \tag{S17}$$

The proportional relationships between the ΔG and D_d values:

$$\Delta G_{OH^*} = 0.088 \times D_d - 1.124 \tag{S18}$$

$$\Delta G_{O^*} = 0.141 \times D_d - 0.849 \tag{S19}$$

 $\Delta G_{OOH^*} = 0.079 \times D_d + 1.806$

(S20)

Coordination	Dopant	E _{system}	$E_{\rm C}$	$E_{\rm N}$	$E_{\rm TM}$	$\Delta E_{\rm form}$
Environment	Position	(eV)	(eV)	(eV)	(eV)	(eV)
	Pristine	-13528.163				-9.012
Eo avridino N	N1 site	-13643.767			2956 265	-8.967
re ₁ -pyrialite N ₄	N2 site	-13643.775			-2830.303	-8.975
	N3 site	-13643.779				-8.979
	Pristine	-11187.764				-9.021
Co ₁ -pyridine	N1 site	-11303.357	•		515.057	-8.965
N_4	N2 site	-11303.366			-313.937	-8.974
	N3 site	-11303.381				-8.989
	Pristine	-14566.938			-3895.158	-8.994
	N1 site	-14682.467	-145.717	-261.366		-8.874
N ₁ -pyridine N ₄	N2 site	-14682.585				-8.992
	N3 site	-14682.592				-8.999
	Pristine	-12653.816			-2856.365	-8.967
Fo numelos N	N1 site	-12769.412				-8.914
re ₁ -pyrrolee N ₄	N2 site	-12769.419				-8.921
	N3 site	-12769.443				-8.945
	Pristine	-10313.395				-8.954
Co ₁ -pyrrolee	N1 site	-10428.994			515.057	-8.904
N_4	N2 site	-10429.007			-515.957	-8.917
	N3 site	-10429.015				-8.925
	Pristine	-13692.476				-8.834
	N1 site	-13808.071			2005 150	-8.780
N ₁ -pyrrolee N ₄	N2 site	-13808.085			-3895.158	-8.794
	N3 site	-13808.093				-8.802

Table S1. The formation energy of all systems.

Coordination	Dopant		d_{TM1}	V _d	Dd		
Environment	Position	Bond 1	Bond 2	Bond 3	Bond 4	(Å ³)	(e/Å ³)
	Pristine	1.891	1.891	1.891	1.891	0.918	26.144
Fe ₁ -pyridine N ₄	N1 site	1.871	1.899	1.892	1.877	0.909	26.402
	N2 site	1.894	1.886	1.886	1.894	0.917	26.185
	N3 site	1.908	1.901	1.887	1.888	0.925	25.936
	Pristine	1.884	1.884	1.884	1.884	0.905	30.941
Co ₁ -pyridine	N1 site	1.867	1.893	1.883	1.869	0.896	31.236
N ₄	N2 site	1.883	1.879	1.879	1.883	0.900	31.090
	N3 site	1.901	1.893	1.879	1.881	0.912	30.719
	Pristine	1.881	1.881	1.881	1.881	0.898	35.646
Ni nuridina N	N1 site	1.883	1.883	1.877	1.873	0.895	35.759
m ₁ -pyrialite m ₄	N2 site	1.885	1.876	1.876	1.885	0.897	35.673
	N3 site	1.901	1.890	1.879	1.880	0.907	35.276
	Pristine	1.972	1.972	1.972	1.972	1.041	23.053
Eo numelos N	N1 site	1.997	1.989	1.962	1.953	1.047	22.933
re ₁ -pyriolee N ₄	N2 site	1.974	1.969	1.969	1.974	1.040	23.070
	N3 site	2.013	2.000	1.953	1.978	1.064	22.560
	Pristine	1.989	1.989	1.989	1.989	1.065	26.295
Co ₁ -pyrrolee	N1 site	2.020	2.005	1.977	1.968	1.071	26.148
N ₄	N2 site	1.991	1.987	1.987	1.991	1.065	26.295
	N3 site	2.033	2.018	1.968	1.994	1.088	25.726
	Pristine	1.955	1.955	1.955	1.955	1.008	31.749
Ni numalaa N	N1 site	1.983	1.967	1.948	1.939	1.015	31.536
¹ NI ₁ -pyrrolee N ₄	N2 site	1.954	1.953	1.953	1.954	1.006	31.822
	N3 site	1.985	1.982	1.942	1.962	1.028	31.129

Table S2. The lengths of TM₁-N bonds ($d_{\text{TM1-N}}$), the estimated dynamic volume of *d* electron (V_d) and *d* electron density (D_d) of each TM₁ ion.

System	Rond	-ICOHP	System	Rond	-ICOHP	System	Bond	-ICOHP
System	Bolla	(eV)	System	Bolla	(eV)	System	Bolla	(eV)
Fe-pyridine		0.935	Co-pyridine		1.236	Ni-pyridine		0.964
	1	1.027		1	1.275		1	0.968
N1 site	2	0.908	N1 site	2	1.193	N1 site	2	0.914
INT SILE	3	0.919	INT SHE	3	1.211	INT SILE	3	0.921
	4	0.891		4	1.198		4	0.901
	1	0.841		1	1.139		1	0.864
N2 site	2	0.891	N2 site	2	1.191	N2 site	2	0.916
	3	0.892		3	1.191		3	0.916
	4	0.841		4	1.139		4	0.864
	1	0.823		1	1.099		1	0.833
NI2 aita	2	0.907	N3 site	2	1.179	N3 site	2	0.913
N5 site	3	0.914		3	1.212		3	0.932
	4	0.909		4	1.192		4	0.914
Fe-pyrrolee		0.613	Co-pyrrolee		0.973	Ni-pyrrolee		0.787
	1	0.709		1	0.998		1	0.742
	2	0.578	N1 site	2	0.976	N1 site	2	0.751
INT site	3	0.598		3	0.988		3	0.749
	4	0.522		4	0.916		4	0.705
	1	0.505		1	0.889		1	0.677
N2 site	2	0.561	N2 site	2	0.945	N2 site	2	0.725
	3	0.561		3	0.945		3	0.725
	4	0.505		4	0.889		4	0.677
	1	0.532		1	0.903		1	0.689
	2	0.588		2	0.967	N12 -:+-	2	0.752
IN 3 SILE	3	0.607	IN 5 SILE	3	0.986	INS SILE	3	0.767
	4	0.578		4	0.964		4	0.753

Table S3. The integration of negative crystal orbitals Hamiltonian population (-ICOHP) values of TM_1 -N bonds.

Table S4. The free energy of each intermediate (ΔG_{OH^*} , ΔG_{O^*} or ΔG_{OOH^*}), the free energy change of each elemental step (ΔG_1 , ΔG_2 , ΔG_3 or ΔG_4) and the reaction overpotentials of OER (η^{OER}) and ORR (η^{ORR}).

Coordination	Dopant	ΔG_{OH}	ΔG_{O^*}	ΔG _{OOH}	ΔG_1	ΔG_2	ΔG_3	ΔG_4	η^{OER}	η ^{orr}
Environment	Position	* (eV)	(eV)	* (eV)	(eV)	(eV)	(eV)	(eV)	(V)	(V)
	Pristine	1.021	2.517	3.867	1.021	1.496	1.350	1.053	0.266	0.209
For availation N	N1 site	1.096	2.702	3.967	1.096	1.606	1.265	0.953	0.376	0.277
re ₁ -pyridine N ₄	N2 site	1.034	2.636	3.881	1.034	1.602	1.245	1.039	0.372	0.196
	N3 site	1.011	2.484	3.821	1.011	1.473	1.337	1.099	0.243	0.219
	Pristine	1.837	3.581	4.512	1.837	1.744	0.931	0.408	0.607	0.822
Co ₁ -pyridine	N1 site	1.862	3.632	4.518	1.862	1.770	0.886	0.402	0.632	0.828
N ₄	N2 site	1.841	3.616	4.513	1.841	1.775	0.897	0.407	0.611	0.823
	N3 site	1.747	3.467	4.371	1.747	1.720	0.904	0.549	0.517	0.681
	Pristine	1.821	4.024	4.595	1.821	2.203	0.571	0.325	0.973	0.905
Ni nymidina N	N1 site	1.887	4.098	4.619	1.887	2.211	0.521	0.301	0.981	0.929
N ₁ -pyrialite N ₄	N2 site	1.846	4.084	4.598	1.846	2.238	0.514	0.322	1.008	0.908
	N3 site	1.789	3.899	4.537	1.789	2.110	0.638	0.383	0.880	0.847
	Pristine	0.896	2.351	3.687	0.896	1.455	1.336	1.233	0.225	0.334
Es municipa N	N1 site	0.845	2.301	3.615	0.845	1.456	1.314	1.305	0.226	0.385
re ₁ -pyrrolee N ₄	N2 site	0.912	2.378	3.694	0.912	1.466	1.316	1.226	0.236	0.318
	N3 site	0.794	2.233	3.512	0.794	1.439	1.279	1.408	0.209	0.436
	Pristine	1.228	3.142	3.845	1.228	1.914	0.703	1.075	0.684	0.527
Co ₁ -pyrrolee	N1 site	1.213	3.041	3.816	1.213	1.828	0.775	1.104	0.598	0.455
N ₄	N2 site	1.232	3.155	3.871	1.232	1.923	0.716	1.049	0.693	0.514
	N3 site	1.199	2.891	3.743	1.199	1.692	0.852	1.177	0.462	0.378
	Pristine	1.772	3.698	4.181	1.772	1.926	0.483	0.739	0.696	0.747
Ni ₁ -pyrrolee N ₄	N1 site	1.732	3.678	4.177	1.732	1.946	0.499	0.743	0.716	0.731
	N2 site	1.798	3.802	4.218	1.798	2.004	0.416	0.702	0.774	0.814

	N3 site	1.689	3.647	4.148	1.689	1.958	0.501	0.772	0.728	0.729
--	---------	-------	-------	-------	-------	-------	-------	-------	-------	-------

Table S5. The comparison of OER/ORR activity between our systems and other works

Flootroootalysta	η^{OER}	η^{ORR}	Reference
Electrocatarysis	(V)	(V)	
N3-doped Fe ₁ -pyrrole N ₄	209		Our work
N2-doped Fe ₁ -pyridine N ₄		196	Our work
Co@N ₄ SAC	330	410	Ref [1]
IrN ₄ -C	300	N.A.	Ref [2]
g-C ₃ N ₄ (TM/VN-CN)	320	430	Ref [3]
TMN ₄ @G	260	240	Ref [4]
Ir/pyrrolic-N ₄ -G	320	340	Ref [5]
3FeCN/S	260	480	Ref [6]
TMN ₄ -gra	N.A.	339	Ref [7]
$((TM-N_xO_{4-x})@g-C1_6N_{3-}h3, x = 0-4)$	300	460	Ref [8]

Figure S1. The total energies of systems with the initial magnetic moments of Fe, Co and Ni atoms in (a) Fe₁-pyridine N_4 , (c) Co₁-pyridine N_4 , (e) Ni₁-pyridine N_4 , (b) Fe₁-pyrrole N_4 , (d) Co₁-pyrrole N_4 , and (f) Ni₁-pyrrole N_4 systems.

Figure S2. The changed percentages (%) of all TM_1 -N bonds. (a) bond 1, (b) bond 2, (c) bond 3 and (d) bond 4.

Figure S3. The negative crystal orbitals Hamiltonian population (-COHP) of Fe₁-N bonds in (a) N1 doped, (c) N2 doped and (e) N3 doped Fe₁-pyridine N_4 active centers, (b) N1 doped, (d) N2 doped and (f) N3 doped Fe₁-pyrrolee N_4 active centers, comparing for pristine active centers.

Figure S4. The negative crystal orbitals Hamiltonian population (-COHP) of Co_1 -N bonds in (a) N1 doped, (c) N2 doped and (e) N3 doped Co_1 -pyridine N₄ active centers, (b) N1 doped, (d) N2 doped and (f) N3 doped Co_1 -pyrrolee N₄ active centers, comparing for pristine active centers.

Figure S5. The negative crystal orbitals Hamiltonian population (-COHP) of Ni₁-N bonds in (a) N1 doped, (c) N2 doped and (e) N3 doped Ni₁-pyridine N₄ active centers, (b) N1 doped, (d) N2 doped and (f) N3 doped Ni₁-pyrrolee N₄ active centers, comparing for pristine active centers.

Figure S6. The atom structures of (a) *, (b) OH*, (c) O* and (d) OOH*, * denoted the active site of TM monoatom in TM_1 -pyridine N_4 systems, where the white, red, gray, blue and green balls denoted the H, O, C, N and TM atoms.

Figure S7. The atom structures of (a) *, (b) OH*, (c) O* and (d) OOH*, * denoted the active site of TM monoatom in TM_1 -pyrrolee N_4 systems, where the white, red, gray, blue and green balls denoted the H, O, C, N and TM atoms.

Figure S8. The correlations between the adsorption free energies of OER/ORR oxygenous intermediates and positions of N dopant. The differences of (a) ΔG_{OH^*} , (c) ΔG_{O^*} and (e) ΔG_{OOH^*} between the pristine and N doped TM₁-pyridine N₄ active centers; The differences of (b) ΔG_{OH^*} , (d) ΔG_{O^*} and (f) ΔG_{OOH^*} between the pristine and N doped TM₁-pyrrolee N₄ active centers.

Figure S9. The correlations between the TM_1 (and the first-shell N) atoms and adsorption free energies of (a) ΔG_{OH^*} , (b) ΔG_{O^*} and (c) ΔG_{OOH^*} .

Figure S10. The correlations between the dynamic volume of *d* electrons (V_d) and adsorption free energies of (a) ΔG_{OH^*} (c) ΔG_{O^*} and (e) ΔG_{OOH^*} .

Figure S11. The Gibbs free energy change curves of OER/ORR on the TMN₄ active centers under the potential of U = 0 V. Pristine and N doped (a) Fe₁-pyridine N₄, (b) Fe₁-pyrrolee N₄, (c) Co₁pyridine N₄, (d) Co₁-pyrrolee N₄, (e) Ni₁-pyridine N₄, (f) Ni₁-pyrrolee N₄ systems.

14.3500003815			15	0.0000000000	0.000000000 0.0000000000		
	-6.8575266854			12.6054289379			
	0.0000	00000	00	0.0000000000	15.000000000		
С	Ν	Η	Fe				
53	5	6	1				
Direct							
0.	5283000	000		0.970970000	0.103150000		
0.	.3006500	000		0.866240000	0.103190000		
0.	3571300	000		0.979140000	0.103160000		
0.	1880200	000		0.982580000	0.103150000		
0.	.3579900	000		0.807060000	0.103190000		
0.	7477800	000		0.648020000	0.103200000		
0.	.9595300	000		0.700190000	0.103200000		
0.	8438400	000		0.635840000	0.103190000		
0.	.8030900	000		0.525790000	0.103160000		
0.	4698000	000		0.860410000	0.103160000		
0.	4750700	000		0.691570000	0.103150000		
0.	4704700	000		0.028600000	0.103190000		
0.	6984400	000		0.133360000	0.103190000		
0.	6418200	000		0.020510000	0.103180000		
0.	8116600	000		0.017490000	0.103220000		
0.	.6411500	000		0.192490000	0.103250000		
0.	.0407200	000		0.299690000	0.102610000		
0.	1568000	000		0.364310000	0.101930000		
0.	5293000	000		0.139250000	0.103380000		
0.	5252000	000		0.308570000	0.103370000		
0.	9710100	000		0.528450000	0.103180000		
0.	.8662700	000		0.300680000	0.103250000		
0.	.9792900	000		0.357450000	0.103120000		
0.	9824600	000		0.188340000	0.103020000		
0.	.8071300	000		0.357910000	0.103220000		
0.	6481200	000		0.747650000	0.103160000		
0.	7002000	000		0.959620000	0.103190000		
0.	.6359200	000		0.843840000	0.103150000		
0.	5258400	000		0.803030000	0.103140000		
0.	8604100	000		0.469710000	0.103170000		
0.	.6915800	000		0.475080000	0.103180000		
0.	.0288000	000		0.470850000	0.103280000		
0.	1334600	000		0.698710000	0.103210000		
0.	.0206300	000		0.642020000	0.103180000		
0.	.0172100	000		0.811570000	0.103190000		
0.	1926800	000		0.641610000	0.103380000		

Data S1. The cartesian coordinate of N3-doped Fe_1 -pyrrole N_4 . CIF file

0.352420000	0.253030000	0.101800000
0.299260000	0.040500000	0.103010000
0.363870000	0.156430000	0.102710000
0.473860000	0.197040000	0.103440000
0.139510000	0.529720000	0.103530000
0.308870000	0.525280000	0.102970000
0.130060000	0.869550000	0.103170000
0.188160000	0.811290000	0.103190000
0.869500000	0.130350000	0.103230000
0.811140000	0.188190000	0.103230000
0.742360000	0.742190000	0.103180000
0.635960000	0.364170000	0.103310000
0.305190000	0.694600000	0.103310000
0.364220000	0.635960000	0.103320000
0.694550000	0.304970000	0.103230000
0.253370000	0.352920000	0.100840000
0.258700000	0.258870000	0.100060000
0.197250000	0.474130000	0.103180000
0.654770000	0.547010000	0.103170000
0.453570000	0.345750000	0.102710000
0.547020000	0.654800000	0.103110000
0.345990000	0.453870000	0.101700000
0.974690000	0.857370000	0.103190000
0.025100000	0.142670000	0.103210000
0.856920000	0.974360000	0.103180000
0.142140000	0.025100000	0.103260000
0.816590000	0.816330000	0.103210000
0.184340000	0.185380000	0.098300000
0.500350000	0.500350000	0.102630000

14.3500003815	0.0000000000	0.000000000 0.000000000	
-7.1750001907	12.4274648747		
0.0000000000	0.0000000000	18.000000000	
C N Fe			
65 5 1			
Direct			
0.305860000	0.029820000	0.076900000	
0.360020000	0.140870000	0.074550000	
0.472850000	0.031770000	0.074760000	
0.527090000	0.144020000	0.072240000	
0.639330000	0.032480000	0.073590000	
0.693760000	0.144410000	0.071810000	
0.806120000	0.032530000	0.074740000	
0.860820000	0.143760000	0.074000000	
0.972220000	0.031140000	0.076500000	
0.026760000	0.141800000	0.075990000	
0.138760000	0.029870000	0.077370000	
0.192600000	0.140230000	0.076020000	
0.303340000	0.195330000	0.074180000	
0.357410000	0.304750000	0.071320000	
0.470640000	0.199830000	0.071660000	
0.522120000	0.312470000	0.067780000	
0.637950000	0.200730000	0.070070000	
0.691540000	0.312880000	0.066640000	
0.804880000	0.199430000	0.071820000	
0.859740000	0.310380000	0.070250000	
0.971440000	0.198010000	0.074690000	
0.026780000	0.308940000	0.074000000	
0.137150000	0.195590000	0.075440000	
0.192230000	0.306380000	0.073960000	
0.301570000	0.360410000	0.071900000	
0.634740000	0.369990000	0.064620000	
0.691980000	0.482500000	0.062370000	
0.803410000	0.366200000	0.067130000	
0.860230000	0.477120000	0.066560000	
0.971360000	0.364840000	0.072320000	
0.028720000	0.475820000	0.072920000	
0.137750000	0.363010000	0.074170000	
0.196680000	0.473670000	0.074300000	
0.309270000	0.525140000	0.072650000	
0.699040000	0.647480000	0.063990000	
0.804410000	0.533560000	0.064020000	

Data S2. The cartesian coordinate of N2-doped Fe₁-pyridine N_4 . CIF file

0.862880000	0.644270000	0.066510000
0.972510000	0.531480000	0.070630000
0.029640000	0.642210000	0.073000000
0.140870000	0.530050000	0.075100000
0.197750000	0.640930000	0.076480000
0.309960000	0.694550000	0.075910000
0.363060000	0.806280000	0.076330000
0.479660000	0.695000000	0.071170000
0.530190000	0.807220000	0.073000000
0.697970000	0.811510000	0.070850000
0.808650000	0.701420000	0.066560000
0.863980000	0.811290000	0.071470000
0.973840000	0.698290000	0.071450000
0.029570000	0.809010000	0.074990000
0.141400000	0.696750000	0.076510000
0.196320000	0.807850000	0.077800000
0.307340000	0.862730000	0.077520000
0.361830000	0.974420000	0.076690000
0.474100000	0.863030000	0.074880000
0.528510000	0.975540000	0.074500000
0.641220000	0.865380000	0.072880000
0.695450000	0.976750000	0.074070000
0.807810000	0.866280000	0.072810000
0.861650000	0.977020000	0.075340000
0.974020000	0.864990000	0.074880000
0.028420000	0.975740000	0.076930000
0.140440000	0.863690000	0.077590000
0.194940000	0.974440000	0.077860000
0.645780000	0.703400000	0.066700000
0.366980000	0.637710000	0.073260000
0.360080000	0.467680000	0.070220000
0.464720000	0.363680000	0.067890000
0.536530000	0.642440000	0.067380000
0.640630000	0.541360000	0.061910000
0.500980000	0.504640000	0.065610000

Notes and References

- M. Hu, S. Li, S. Zheng, X. Liang, J. Zheng and F. Pan, J. Phys. Chem. C, 2020, 124, 13168-13176.
- [2] J. Wang, J. Bai, Y. Cang, Q. Li, X. Fan and H. Lin, Catalysts, 2023, 13, 1378.
- [3] H Niu, X Wan, X Wang, C Shao, J Robertson, Z Zhang and Y Guo, ACS Sustain. Chem. Eng., 2021, 9, 3590-3599.
- [4] Z. Xue, X. Zhang, J. Qin and R. Liu, J. Energy. Chem., 2021, 55, 437-443.
- [5] X Li, Z Su, Z Zhao, Q Cai, Y Li and J Zhao, J. Colloid. Interf. Sci., 2022, 607, 1005-1013.
- [6] Z Xue, R Tan, J Tian, H Hou, X Zhang and Y Zhao, J. Colloid. Interf. Sci., 2024, 667, 679-687.
- [7] M. Chen, M. Luo, C. Liu C, X. Qi, SG Peera and T. Liang, *Comput. Theor. Chem.*, 2020, 1187, 112945.
- [8] C Fang, X Wang, Q Zhang, X Zhang, C Shi, J Xu and M Yang, Nano Res., 2024, 17, 2337 51.