PCCP

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxx

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI): Ion pairing in aqueous tetramethylammonium-acetate solutions by neutron scattering and molecular dynamics simulations

Ngoc Lan Le Nguyen,^[a] Ondrej Tichacek,^[a] Pavel Jungwirth,^[a] Hector Martinez-Seara,^[a] Philip E. Mason,*^[a] Elise Duboué-Dijon,*^[b]

1 Additional computational details

All performed the simulations are listed in Table S1.

Table S1: List of all simulated TMA-acetate systems

	System	Scaling factor	TMA force field	Acetate force field	Water model
1	CHARMM36-FULL	1.00	FULL	FULL	
2	CHARMM36-ECC85	0.85	ECC85	ECC85	
3	CHARMM36-ECC75		ECC75	ECC75	
4	CHARMM36-Low CH dipole	0.75		ECC75	GHARIVIIVI-TIP3P
5	CHARMM36-Low CO dipole	0.75	Low CH	Low CO	
6	CHARMM36-High CO dipole			High CO	
7	AMBER99SB-FULL	1.00	FULL	FULL	
8	AMBER99SB-ECC85	0.85	ECC85	ECC85	TIP3P
9	AMBER99SB-ECC75	0.75	ECC75	ECC75	

Table S2 lists all the TMA force fields used in the performed MD simulations.

Table S2: Details of the different TMA force fields used in this study. The employed atoms types are specified in parenthesis.

TMA force field		Atom (ato	Overall charge			
		N (NTL) C (CTL5) H (H (HL)	Overall charge	
	FULL	-0.60	-0.35	0.25	+1.00	
СПУримае	ECC85	-0.60	-0.35	0.2375	+0.85	
CHARMINISU	ECC75	-0.61	-0.35	0.23	+0.75	
	Low CH	-0.05	-0.10	0.10		
		N (n4)	C (c3)	H (hx)		
	FULL	0.255981	-0.454050	0.213352	+1.00	
AMBER99SB	ECC85	0.255980	-0.454051	0.200852	+0.85	
	ECC75	0.255980	-0.454052	0.192519	+0.75	

Table S3 lists all the acetate (Ac) force fields used in the performed MD simulations.

^a Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542, 160 00 Praha 6, Czech Republic, Email: philip.mason@uochb.cas.cz

^b Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France, E-mail: elise.duboue-dijon@cnrs.fr

Table S3: Details of all acetate force fields used in this study. The employed atoms types are specified in parenthesis.

Acetate force field		Atom (atom type) partial charge				Overall charge
		C (CC)	0 (OC)	C (CT3)	H (HA3)	Overall charge
	FULL	0.620	-0.760	-0.370	0.090	-1.00
	ECC85	0.527	-0.646	-0.3145	0.0765	-0.85
CHARMM36	ECC75	0.465	-0.570	-0.2775	0.0675	
	Low CO	0.225	-0.450	-0.2775	0.0675	-0.75
	High CO	0.925	-0.800	-0.2775	0.0675	
		C (C)	0 (02)	C (CT)	H (HC)	
	FULL	0.88641	-0.84114	-0.22228	0.00605	-1.00
AMBER99SB	ECC85	0.75345	-0.71497	-0.18893	0.00514	-0.85
	ECC75	0.66481	-0.63086	-0.16671	0.00454	-0.75

2 Additional experimental details

Following a similar strategy as presented in the Methods section of the main text, but taking the difference between the diffraction patterns associated with solutions that differ only by the H/D substitution on acetate (both in D₂O and H₂O solutions), we obtained the first-order differences $\Delta S_{H_{non}}^{X_{H_2O}}(Q)$ and $\Delta S_{H_{non}}^{X_{D_2O}}(Q)$ (Fig. S1), that report on the correlation between non-exchangeable H on Ac and every other atom (*X*) in the system. They are respectively defined as (in units of mbarns):

$$\Delta S_{H_{non}}^{X_{D_2O}}(Q) = S[d_3Ac - h_{12}TMA]^{D_2O}(Q) - S[h_3Ac - h_{12}TMA]^{D_2O}(Q)$$

$$= 20.1 \cdot S_{H_{Ac}D_W}(Q) + 9.4 \cdot S_{H_{Ac}O}(Q)$$

$$+ 2.2 \cdot S_{H_{Ac}C}(Q) + 0.5 \cdot S_{H_{Ac}N}(Q)$$

$$- 2.4 \cdot S_{H_{Ac}H_{TMA}}(Q) + 0.2 \cdot S_{H_{Ac}H_{Ac}}(Q) - 30.0$$
(S1)

$$\Delta S_{H_{non}}^{X_{H_2O}}(Q) = S[d_3Ac - h_{12}TMA]^{H_2O}(Q) - S[h_3Ac - h_{12}TMA]^{H_2O}(Q)$$

= -11.3 · S_{H_{Ac}H_W}(Q) + 9.4 · S_{H_{Ac}O}(Q)
+ 2.2 · S_{H_{Ac}C}(Q) + 0.5 · S_{H_{Ac}N}(Q)
- 2.4 · S_{H_{Ac}H_{TMA}(Q) + 0.2 · S_{H_{Ac}H_{Ac}}(Q) + 1.4 (S2)}

The difference between Equation S1 and S2 yields the second order difference which now reports on a single correlation between the first nuclei that was substituted (H/D on the acetate), and the second nuclei (H/D on water) (see Equation S3) as shown in Figure S1.

$$\Delta\Delta S_{H_{Ac}H_{W}}(Q) = S[d_{3}Ac - h_{12}TMA]^{D_{2}O}(Q) - S[h_{3}Ac - h_{12}TMA]^{D_{2}O}(Q)$$

- $(S[d_{3}Ac - h_{12}TMA]^{H_{2}O}(Q) - S[h_{3}Ac - h_{12}TMA]^{H_{2}O}(Q))$
= $31.4 \cdot (S_{H_{Ac}H_{W}}(Q) - 1)$ (S3)

Figure S1: Total diffraction patterns for the solutions of the isotopic compositions of the 4 samples: h_{12} TMA- h_3 Ac ($H_{TMA}H_{Ac}$, green) and h_{12} TMA- d_3 Ac ($H_{TMA}D_{Ac}$, magenta) in H₂O; h_{12} TMA- h_3 Ac ($H_{TMA}H_{Ac}$, violet) and h_{12} TMA- d_3 Ac ($H_{TMA}D_{Ac}$, orange) in D₂O for experiments measured at (a) 7C2 and (b) D4C. First order differences of $\Delta S^{X_{H_2O}}_{H_{non}}(Q)$ (red) and $\Delta S^{X_{D_2O}}_{H_{non}}(Q)$ (light blue) for samples measured at (c) 7C2 and (d) D4C. (e) Second order differences 31.4 · ($S_{H_{Ac}}H_W(Q) - 1$), obtained at 7C2 (red) and at D4C (blue). (f) Second order differences after the background subtraction and terminating data up to 13 Å⁻¹.

Figure S2: (a) Radial distribution function from TMA hydrogen atoms to acetate hydrogen atoms, $g(r_{H_{TMA}-H_{Ac}})$, from the MD simulation using CHARMM36-ECC85. (b) Comparison of the second order difference of $\Delta\Delta S_{H_{TMA}H_{Ac}}(Q)$ from the full vs. terminated (at 6 Å⁻¹) data in the Q-range. (c) The two sets of MD data transformed back to R-space show no effects of the data terminating.

3 Additional MD analyses

Figure S3: Comparison of the second order difference of $\Delta\Delta S_{H_{TMA}H_{Ac}}(Q)$ of CHARMM36-Low CH dipole (cyan), CHARMM36-Low CO dipole (purple), CHARMM36-High CO dipole (olive), and AMBER99SB-ECC75 (yellow) versus experiment at 7C2 (black) in (a) reciprocal space (Q-space) and (b) real space (R-space). (c) The density maps show the density of H_{TMA} around acetate corresponding for the used force fields.

Figure S4: Comparison of second order difference $\Delta\Delta S_{H_{AC}H_{water}}(Q)$ of experiments at 7C2 (black) and D4C (gray) vs. FFMD simulations with different force fields: CHARMM36-Low CH dipole (cyan), CHARMM36-Low CO dipole (purple), CHARMM36-High CO dipole (olive), and AMBER99SB-ECC75 (yellow).

Figure S5: Radial distribution functions from the TMA nitrogen atom to the acetate carboxyl carbon atom, $g(r_{N_{TMA}-C_{Ac}})$ from CHARMM36-Low CH dipole (cyan), CHARMM36-Low CO dipole (purple), CHARMM36-High CO dipole (olive), and AMBER99SB-ECC75 (yellow) force fields.