Supporting Information

Functionalized Sc₂N as Ohmic contacted electrodes for Monolayer

PtSe2: An ab initio Study

Hong Li^{1,*}, Jiahui Li¹, Chaoyang Fan¹, Fengbin Liu¹, Shuai Sun¹, and Jing Lu^{2, 3, 4*}

¹College of Mechanical and Material Engineering, North China University of Technology, Beijing 100144, P. R. China

² State Key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China

³ Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China

⁴ Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226000, P. R. China

*Corresponding author: jinglu@pku.edu.cn; lihong@ncut.edu.cn

Table S1. The lattice mismatch, interlayer distance (d), binding energy (E_b) , band gap (E_g) , vertical Schottky barriers $(\Phi_n^{\perp}/\Phi_p^{\perp})$, and lateral Schottky barriers $(\Phi_n^{\prime\prime\prime}/\Phi_p^{\prime\prime\prime})$ of the PtSe₂/Sc₂N and PtSe₂/Sc₂NX₂ (X = F, O, and OH) vertical heterojunctions with supercells of $(\sqrt{3} \times \sqrt{3})/(2 \times 2)$.

	mismatch	d	E _b	Eg	$\Phi_n^{\perp}/\Phi_p^{\perp}$	$\Phi_n{}^{\prime\prime}/\Phi_p{}^{\prime\prime}$
		(Å)	(meV/Å ²)	(eV)	(eV)	(eV)
PtSe ₂ /Sc ₂ N	1.38%	3.02	-86.76	1.12	-0.32/1.44	-0.32/1.31
$PtSe_2/Sc_2NF_2$	0.97%	2.87	-23.51	1.36	-0.02/1.38	-0.14/1.38
PtSe ₂ /Sc ₂ NO ₂	0.32%	2.55	-49.38	1.55	1.32/0.23	1.43/-0.03
PtSe ₂ /Sc ₂ N(OH) ₂	0.21%	2.03	-62.80	1.32	-0.16/1.48	-0.16/1.48

Figure S1. (a) The geometric structure and (b) projected band structure of ML PtSe₂. (c) The projected band structure of ML PtSe₂ with $\sqrt{3} \times \sqrt{3}$ supercell and Bloch states at specific k point.

Figure S2. The band structures of ML Sc_2N and functionalized Sc_2NX_2 (X = F, O, and OH).

Figure S3. The *ab initio* molecular dynamics (AIMD) simulations of the PtSe₂/Sc₂NX₂ (X =null, F, O, and OH) vertical heterojunctions at 300 K for 2000 fs.

Figure S4. The electrostatic potentials of the $PtSe_2/Sc_2NX_2$ (X =null, F, O, and OH) vertical heterojunctions.

Figure S5. Side and top views of two more considered stacking patterns of the $PtSe_2/Sc_2NX_2$ (X =null, F, O, and OH) vertical heterojunctions with $Sc_2N(OH)_2$ metal as representative.

Figure S6. Comparison of projected band structures of the $PtSe_2/Sc_2NX_2$ (X =null, F, O, and OH) vertical heterojunctions with stacking patterns.

Figure S7. The projected band structures of the $PtSe_2/Sc_2NX_2$ (X =null, F, O, and OH) vertical heterojunctions at HSE06 level.