The calculations of NpH phase diagrams

Three steps are required to calculate the NpH phase diagram from the MD simulation.

1. Perform a series of NVE MD simulations (constant atomic number N, volume V and total energy E) of a solid-liquid bi-phase coexisting system to achieve the correlation of pressure and equilibrium melting point, $p-T_m$, and fit the computational experimental data with a second order polynomial. In this case, the pressure is achieved by adjusting the volume of the system.

2. From the fitted polynomials, we can computer a series of $p_i T_{m,i}$ data pairs. Then, perform a series of NpT MD simulations (constant atomic number, pressure and temperature) of single crystal and liquid phases with the imposed $p_i T_{m,i}$ conditions to achieve potential energy P_i , kinetic energy K_i and volume v_i , and finally the enthalpy $H_i = P_i + K_i + p_i v_i$.

Al									
i	Т	р	$P_{\rm L}$	$P_{\rm S}$	$v_{ m L}$	$v_{\rm S}$	$H_{\rm L}$	$H_{\rm S}$	
	Κ	GPa	eV/atom	eV/atom	Å ³ /atom	ų/atom	eV/atom	eV/atom	
1	930.89	0.005	-3.029	-3.141	18.701	17.728	-2.908	-3.020	
2	946.46	0.328	-3.028	-3.139	18.594	17.657	-2.868	-2.980	
3	962.12	0.665	-3.026	-3.137	18.491	17.583	-2.825	-2.940	
4	977.99	1.018	-3.024	-3.134	18.383	17.507	-2.781	-2.896	
5	993.65	1.380	-3.022	-3.131	18.278	17.430	-2.736	-2.852	
6	1009.52	1.760	-3.019	-3.129	18.170	17.350	-2.689	-2.808	
7	1025.18	2.148	-3.017	-3.126	18.063	17.269	-2.642	-2.762	
8	1040	2.527	-3.014	-3.123	17.959	17.190	-2.596	-2.717	
9	1056.71	2.967	-3.011	-3.119	17.843	17.101	-2.544	-2.665	

Fe									
i	Т	р	$P_{\rm L}$	$P_{\rm S}$	$v_{ m L}$	$v_{\rm S}$	$H_{\rm L}$	$H_{\rm S}$	
	Κ	GPa	eV/atom	eV/atom	Å ³ /atom	Å ³ /atom	eV/atom	eV/atom	
1	1825.67	0.007	-3.429	-3.617	13.162	12.290	-3.192	-3.380	
2	1829.5	0.085	-3.429	-3.616	13.151	12.283	-3.186	-3.373	
3	1833.95	0.178	-3.428	-3.616	13.140	12.276	-3.176	-3.365	
4	1838.41	0.271	-3.428	-3.615	13.128	12.268	-3.168	-3.357	
5	1842.86	0.365	-3.428	-3.614	13.114	12.261	-3.160	-3.348	
6	1847.32	0.460	-3.427	-3.614	13.102	12.252	-3.151	-3.340	
7	1851.51	0.550	-3.427	-3.613	13.091	12.245	-3.143	-3.332	
8	1855.71	0.640	-3.427	-3.613	13.079	12.237	-3.135	-3.324	
9	1860.16	0.737	-3.426	-3.611	13.065	12.230	-3.125	-3.314	

Mg									
$P_{\rm L}$	$P_{\rm S}$	$v_{ m L}$	$v_{\rm S}$						
//atom	eV/atom	Å ³ /atom	ų/atom						
1.163	-1.262	25.651	24.251						
1.163	-1.261	25.541	24.199						

i	Т	p	P_{L}	$P_{\rm S}$	$v_{ m L}$	$v_{\rm S}$	$H_{\rm L}$	$H_{\rm S}$
	Κ	GPa	eV/atom	eV/atom	ų/atom	Å ³ /atom	eV/atom	eV/atom
1	923.79	0.076	-1.163	-1.262	25.651	24.251	-1.031	-1.131
2	929.47	0.150	-1.163	-1.261	25.541	24.199	-1.019	-1.118
3	935.15	0.227	-1.163	-1.260	25.441	24.145	-1.006	-1.105
4	940.83	0.309	-1.163	-1.260	25.337	24.088	-0.992	-1.092
5	946.51	0.394	-1.163	-1.259	25.244	24.028	-0.978	-1.077
6	952.18	0.483	-1.163	-1.258	25.134	23.966	-0.964	-1.063
7	957.86	0.576	-1.163	-1.257	25.030	23.901	-0.949	-1.047
8	963.54	0.673	-1.163	-1.256	24.923	23.834	-0.934	-1.031
9	969.22	0.773	-1.163	-1.255	24.817	23.765	-0.918	-1.015

3. Finally, plot the lines of $p-H_S$ and $p-H_L$ to act as the solidus and liquidus so as to form the NpH phase diagram.

Table 1The parameters required for the calculation of SL IFE according to SIM, the final results
and the experimental and theoretical reference data.

Metal	<i>Т</i> _т , К	$\Delta H_{\rm f}$, eV/atom		$\Delta S_{\rm f}$, eV/(atom·K)		<i>Г,</i> K∙nm	$ ho_{ m S}$, nm ⁻³		
Al	929(2)	0.1119(15)		1.21(2)×10 ⁻⁴		102(2)	56.41(11)		
Fe	1777(4)	0.1871(26)		1.05(1)×10 ⁻⁴		179(3)	80.23(6)		
Mg	914(2)	0.1002(12)		1.09(1)×10 ⁻⁴		123(1)	41.17(4)		
Metal	γ _{sL} , mJ/m ²								
	This work	Exp. 1 *	Exp. 2	Model	CFM	CPM	CNM		
Al	112(2)	93 ³	163(21) ⁶	155 ²⁸	149 ⁸	-	163 ²⁹		
Fe	241(4)	204 ³	-	241 ²⁸	175(11) ⁹	193.5(4) ²¹	⁷ 170 ³⁰		
Mg	89(1)	-	-	100 28	89.9 ²⁵	-	-		

* Exp. 1: maximum undercooling; Exp. 2: grain boundary groove method; Model: Turnbull model.