# Gas phase conformer-specific far-infrared spectra of 3-chlorophenol and 3-fluorophenol

Olga. A. Duda,<sup>1</sup> Gerrit C. Groenenboom,<sup>2</sup> Daniel A. Horke,<sup>2</sup> and Joost M. Bakker<sup>1</sup>

<sup>1</sup>Radboud University, Institute for Molecules and Materials, HFML-FELIX, Toernooiveld 7, 6525 ED Nijmegen <sup>2</sup>Radboud University, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

SUPPORTING INFORMATION

#### I. Resonance-Enhanced MultiPhoton Ionisation (REMPI) spectra

The REMPI spectra of 3-chlorophenol and 3-fluorophenol are shown below.



FIG. S1. REMPI spectra of 3-chlorophenol (top) and 3-fluorophenol (bottom). The origin bands, used in the IR-UV ion dip scheme, are labelled.



#### II. Raw infrared spectra

FIG. S2. Isomer-resolved infrared spectra of 3CP and 3FP presented with power correction, without vertical scaling.

#### **III.** Anharmonic calculations

The anharmonic calculations were obtained by using the freq=anharmonic keyword in Gaussian16.[?] The anharmonic correction utilizes the Rayleigh-Schrödinger perturbation theory in order to calculate the anharmonic infrared frequencies.[?] The calculated frequencies were convolved with a Gaussian curve with FWHM=0.5% of the central wavelength. The convolved spectra are shown in Figures ?? and ??.



FIG. S3. The infrared spectrum of the two isomers of 3-chlorophenol compared to the simulated spectra. The orange trace in panels b) and d) corresponds to the total convolution of all of the calculated modes. The stick spectra representing individual vibrational modes are colour-coded as follows: fundamental - blue, overtones - red, combination - green.



FIG. S4. The infrared spectrum of the two isomers of 3-fluorophenol compared to the simulated spectra. The orange trace in panels b) and d) corresponds to the result of the anharmonic calculations. The stick spectra representing individual vibrational modes are colour-coded as follows: fundamental - blue, overtones - red, combination - green.

#### IV. One dimensional torsional model for 3CP

The torsional wave functions for 3CP were computed for the potential shown in Figure 5. We took the one-half effective inverse moment of inertia from table 1 of Manocha *et al.* [12]. We only included the constant  $F_0 = 22.4869 \text{ cm}^{-1}$  term and neglected the torsion-angle dependent terms, which are more than a factor thousand smaller. The potential was scaled by a factor 0.969 in order to reproduce the observed torsional frequency of 315 cm<sup>-1</sup> for the *syn* conformer. It was expanded as  $V(\phi) = \sum_{n=0}^{6} \cos(n\phi)c_n$ , with  $c_0, \ldots, c_6 = 659.31, 5.70, -670.60, 3.14, 13.63, -0.66, 0.97 cm<sup>-1</sup>$ . We use a rotational basis of  $\{\cos n\phi, \text{ with } n = 0, 1, \ldots, 30\}$  for the wave functions shown in blue in Figure ?? (columns 1 and 3) and a rotational basis of  $\{\sin n\phi, \text{ with } n = 1, 2, \ldots, 30\}$  for the functions in red (columns 2 and 4). In these calculations, the lowest *syn* energy level is 15 cm<sup>-1</sup> lower in energy than the lowest *anti* energy level.

It can be seen that with the increase in the vibrational quantum number, the wavefunctions become more delocalised.



FIG. S5. Wavefunctions for 3CP calculated on the basis of the 1D torsional potential. The two left columns show the *syn* isomer states, while the two right columns show the *anti* isomer states. The *syn* ground state vibrational wave function, located at torsion angle  $\phi = 180^{\circ}$  is shown in the upper left panel. The *anti* ground state vibrational wave function, located at  $\phi = 0^{\circ}$  is shown in the third panel of the top row. The energies (in cm<sup>-1</sup>) relative to the *syn* ground state are given in the titles of the panels in cm<sup>-1</sup>. In parentheses the energies relative to the *anti* ground level level are shown.

#### V. Natural Bond Order calculations - charge distribution

The charge distribution as calculated using the pop=NBO keyword as implemented in Gaussian16 is given below.

| Atom         | No       | Charge   | Core     | Valence  | Rydberg | Total    |
|--------------|----------|----------|----------|----------|---------|----------|
| $\mathbf{C}$ | 1        | -0.26079 | 1.99900  | 4.24019  | 0.02160 | 6.26079  |
| $\mathbf{C}$ | <b>2</b> | -0.01277 | 1.99861  | 3.98722  | 0.02694 | 6.01277  |
| $\mathbf{C}$ | 3        | -0.16931 | 1.99921  | 4.15053  | 0.01957 | 6.16931  |
| Η            | 4        | 0.21366  | 0.00000  | 0.78515  | 0.00120 | 0.78634  |
| $\mathbf{C}$ | 5        | -0.28082 | 1.99886  | 4.25809  | 0.02387 | 6.28082  |
| $\mathbf{C}$ | 6        | -0.29621 | 1.99904  | 4.27719  | 0.01998 | 6.29621  |
| Η            | 7        | 0.23231  | 0.00000  | 0.76576  | 0.00193 | 0.76769  |
| Η            | 8        | 0.20615  | 0.00000  | 0.79238  | 0.00147 | 0.79385  |
| $\mathbf{C}$ | 9        | 0.30331  | 1.99874  | 3.67744  | 0.02051 | 5.69669  |
| Η            | 10       | 0.22466  | 0.00000  | 0.77392  | 0.00142 | 0.77534  |
| Ο            | 11       | -0.63871 | 1.99978  | 6.61602  | 0.02291 | 8.63871  |
| Cl           | 12       | 0.00537  | 9.99963  | 6.97877  | 0.01623 | 16.99463 |
| Η            | 13       | 0.47316  | 0.00000  | 0.52476  | 0.00207 | 0.52684  |
| Total        | =        | 0.00000  | 23.99288 | 41.82742 | 0.17970 | 66.00000 |

#### VI. Phenol vibrations

The table below contains the frequencies of the phenol vibrations relevant for the discussion of the assigned 3CP and 3FP modes. All the modes are labelled using the Varsanyi notation and their frequencies are taken from *Roth et al.*[? ?]

| Mode       | Frequency $[cm^{-1}]$ |
|------------|-----------------------|
| 10b        | 225                   |
| $\tau(OH)$ | 310                   |
| 16a        | 404                   |
| 6a         | 526                   |
| 6b         | 618                   |
| 4          | 686                   |
| 17b        | 881                   |
| 12         | 999                   |
| 13         | 1261                  |

#### VII. Overtone frequency estimations

The tables below summarise the frequencies (in cm<sup>-1</sup>) calculated for the second and third overtones of the OH torsional mode for the conformers of 3CP and 3FP based on the harmonic frequency  $\omega$  and anharmonicity parameters x, derived using the fundamental and the first overtone via  $\tilde{\nu}_{0\leftarrow 1} = \omega(1-2x)$  and  $\tilde{\nu}_{0\leftarrow 2} = \omega(2-6x)$ . Abbreviations used are TM = torsional model; est = Taylor expansion estimate;

anti-3CP:

| Transition        | Observed | Estimates based on: |                 | Torsional<br>model |
|-------------------|----------|---------------------|-----------------|--------------------|
|                   |          | Experiment          | DFT             |                    |
|                   |          | $\omega = 350,$     | $\omega = 355,$ |                    |
|                   |          | $\omega x{=}17.5$   | $\omega{=}13.5$ |                    |
| $0 \rightarrow 1$ | 315      | 315                 | 328             | 312                |
| $0 \rightarrow 2$ | 595      | 595                 | 629             | 600                |
| $0 \rightarrow 3$ | 863      | 840                 | 903             | 862                |
| $0 \rightarrow 4$ | -        | 1050                | 1150            | 1111               |

| Transition        | Observed | Estimates based on: |                 | Torsional<br>model |
|-------------------|----------|---------------------|-----------------|--------------------|
|                   |          | Experiment          | DFT             |                    |
|                   |          | $\omega = 347,$     | $\omega = 327,$ |                    |
|                   |          | $\omega x{=}16$     | $\omega{=}8$    |                    |
| $0 \rightarrow 1$ | 315      | 315                 | 311             | 315                |
| $0 \rightarrow 2$ | 598      | 598                 | 606             | 606                |
| $0 \rightarrow 3$ | 839      | 849                 | 885             | 856                |
| $0 \rightarrow 4$ | -        | 1068                | 1148            | 1191               |

### anti-3FP:

| Transition        | Observed | Estimates base    | es based on:      |  |  |
|-------------------|----------|-------------------|-------------------|--|--|
|                   |          | Experiment        | DFT               |  |  |
|                   |          | $\omega = 350,$   | $\omega = 340,$   |  |  |
|                   |          | $\omega x = 15.5$ | $\omega {=} 12.5$ |  |  |
| $0 \rightarrow 1$ | 319      | 319               | 315               |  |  |
| $0 \rightarrow 2$ | 607      | 607               | 605               |  |  |
| $0 \rightarrow 3$ | 989      | 864               | 870               |  |  |
| $0 \rightarrow 4$ | -        | 1090              | 1110              |  |  |

## syn-3FP:

| Transit           | ion Observed | Estimates ba      | sed on:           |  |
|-------------------|--------------|-------------------|-------------------|--|
|                   |              | Experiment        | DFT               |  |
|                   |              | $\omega = 340,$   | $\omega {=} 340,$ |  |
|                   |              | $\omega x = 12.5$ | $\omega = 14.5$   |  |
| $0 \rightarrow 1$ | 311          | 311               | 315               |  |
| $0 \rightarrow 2$ | 593          | 593               | 605               |  |
| $0 \rightarrow 3$ | -            | 846               | 870               |  |
| $0 \rightarrow 4$ | -            | 1070              | 1110              |  |