Supporting Information

Metallic PtC monolayer as a promising hydrogen evolution electrocatalyst

Huan Lou^{1*}, and Chi Ma²

¹Department of Applied Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100,

China

²Department of Optoelectronic Information of Science and Engineering, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Corresponding Author *E-mail: louhuan@just.edu.cn

In	dex Page
1.	Computational details
2.	selected low-energy configurations for each monolayer ratio
3.	Phonon dispersive curves of the PtC_x monolayers
4.	Thermal stability of the PtC_x monolayers
5.	Band structures of the PtC_x monolayers
6.	ELF of the PtC_x monolayers \cdots 8
7.	Calculated differential Gibbs free energies as a function of H coverage on T_{C3} site of the PtC ₄
	monolayer 8
8.	Calculated i_0 and ΔG_{H^*} with increasing pH values of the PtC _x monolayer
9.	Free energy of Hydrogen adsorption as a function of the pH value9
10	. d- ΔG_{H^*} as a function of the pH value $\cdots 10$
11	Exchange current density as a function of the pH value
12	Exchange current density as a function of the pH value with various H coverage
13	. Structural information of the PtC_x monolayers 12
14	. Cohesive energy of the PtC_x monolayers 12
15	. Mulliken charge analysis of the PtC_x monolayers \cdots 13
16	ΔG_{H^*} values of the PtC _x monolayers 13
17.	. References······14

Computational Details

The particle swarm optimization (PSO) method within the evolutionary algorithm implemented in the Crystal structure AnaLYsis by Particle Swarm Optimization (CALYPSO) code^{1,2} was employed to find the lowest energy structures of the PtC_x (x = 1-4) monolayers. Unit cells containing 1, 2, and 4 formula units (f.u.) were considered. In the first step, random structures with certain symmetry are constructed in which atomic coordinates are generated by the crystallographic symmetry operations. Local optimizations using the VASP code³ were done with the conjugate gradients method and stopped when Gibbs free energy changes became smaller than 1×10^{-5} eV per cell. After processing the first-generation structures, 60% of them with lower Gibbs free energies are selected to construct the next generation structures by Particle Swarm Optimization (PSO). 40% of the structures in the new generation matrix is applied to the generated structures, so that identical structures are strictly forbidden. These procedures significantly enhance the diversity of the structures, which is crucial for structural global search efficiency. In most cases, structural searching simulations for each calculation were stopped after generating 1000 ~ 1200 structures (*e.g.* about 20-30 generations).

The local structural relaxations and electronic properties calculations were performed in the framework of the density functional theory (DFT)⁴ within the generalized gradient approximation $(GGA)^5$ as implemented in the VASP code. The cut off energy is 500 eV for plane-wave expansions, the total energy and force convergence precision are set to 10^{-5} eV and 10^{-2} eV/Å. Moreover, Van der Waals interactions (DFT-D2) is employed.⁶ The valence orbitals of Pt and C atoms are $6s^{1}5d^{9}$ and $2s^{2}2p^{2}$, respectively.

First-principles molecular dynamics (MD)⁷ simulations for a large supercell were performed at different temperatures of 300 K. The supercells adopt $1 \times 3 \times 3$ for PtC with $P2_1/m$ symmetry, $3 \times 1 \times 1$ for PtC₂ with *Pbam* symmetry, $5 \times 1 \times 1$ for PtC₃ with *Pma2* symmetry, and $1 \times 3 \times 1$ for PtC₄ with *Pbam* symmetry. MD simulation in NVT ensemble lasted for 10 ps with a time step of 1.0 fs. The temperature was controlled by using the Nosé-Hoover method.

The HER performance of the PtC_x (x = 1-4) monolayers are studied by the differential Gibbs free energy of hydrogen adsorption,⁸ *i.e.* $\Delta G_{H^*} = \Delta E_H + \Delta E_{ZPE} - T\Delta S_H$. The adsorption energy types of H are divided into chemisorption and average energies, of which are defined as $d-\Delta E_{\rm H} = E_{\rm PtCx+nH} - E_{\rm PtCx+(n-1)H} - \frac{1}{2}E_{\rm H2}$, and $a-\Delta E_{\rm H} = (E_{\rm PtCx+nH} - E_{\rm PtCx} - \frac{1}{2}nE_{\rm H2})/n$, respectively. $E({\rm PtC}_x+n{\rm H})$ and $E_{\rm H2}$ are the total energies of PtC_x adsorbing *n* H and a H₂, respectively. ΔE_{ZPE} and $\Delta S_{\rm H}$ are zero-point energy difference and entropy difference between adsorbed H and H₂, *T* is room temperature, among $\Delta E_{ZPE} - T\Delta S_{\rm H}$ is given 0.24 eV.⁸ Therefore, there are two HER processes, *i.e.* individual process describes the production of H₂ molecule one by one $(d-\Delta G_{\rm H^*})$, and average process shows all H atoms are simultaneously converted to H₂ ($a-\Delta G_{\rm H^*}$) on the basal surface. The theoretical exchange current (*i*₀) is calculated as⁹

$$= \begin{cases} \frac{-ek_0}{1 + exp\left[-\frac{\Delta G_{H*}}{k_bT}\right]}, \ \Delta G_{H*} \leq 0\\ \frac{-ek_0}{1 + exp\left[\frac{\Delta G_{H*}}{k_bT}\right]}, \ \Delta G_{H*} \geq 0\\ \frac{1 + exp\left[\frac{\Delta G_{H*}}{k_bT}\right]}{1 + exp\left[\frac{\Delta G_{H*}}{k_bT}\right]}, \ \Delta G_{H*} \geq 0 \end{cases}$$

where the rate constant k_0 is presumed 1.

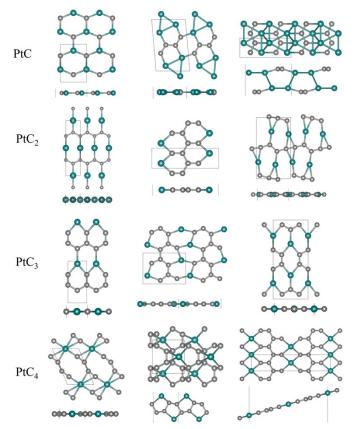
Cohesive energy

Cohesive energy is widely used to ascertain the feasibility for experimental synthesis of the predicted 2D materials. Here, the cohesive energy E_{coh} is calculated based on the equation of $E_{coh} = (E_{Pt} + x \times E_C - E_{PtC_x})/(1 + x)$, where E_{Pt} and E_C for Pt and C atoms are the enthalpy values of each single atom placed in a $10 \times 10 \times 10$ Å box. E_{PtC_x} is the energy of 2D PtC_x unit cell.

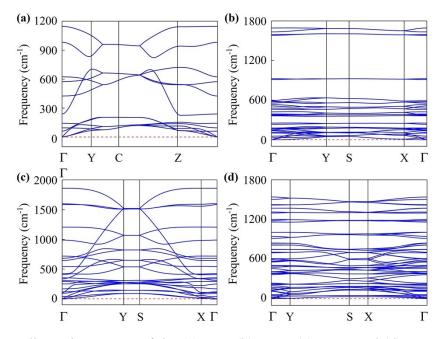
Dissolution potential Udiss

The electrochemical stability of the PtC_x monolayers is assessed by the dissolution potential U_{diss} , which are defined as

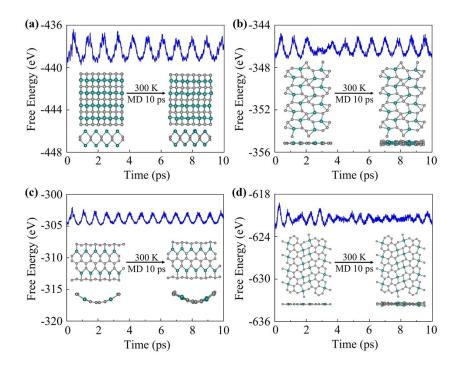
$$E_{\rm f} = (E_{\rm PtCx} - E_{\rm Pt} - E_{\rm C})/2$$
$$U_{\rm diss} = U_{\rm diss}^{0} ({\rm metal, \ bulk}) - E_{\rm f}/{\rm net}$$

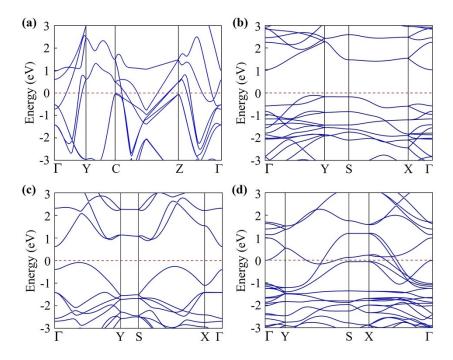

where $E_{\rm f}$ is formation energy, $E_{\rm PtCx} E_{\rm Pt}$, and $E_{\rm C}$ represent the energies of the PtC_x monolayer, the Pt and C atoms in bulk structure, respectively. U_{diss}^{0} (metal, bulk) and n stand for the standard dissolution potential of bulk metal and the number of electrons involved in the dissolution, respectively.

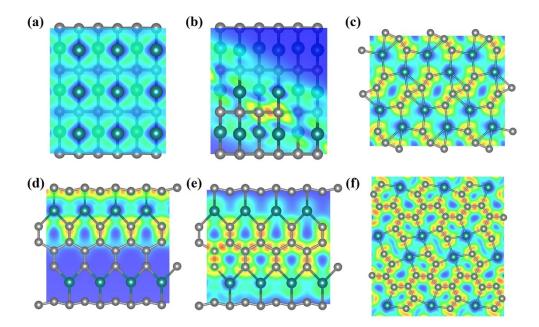
Effect of pH on HER performance

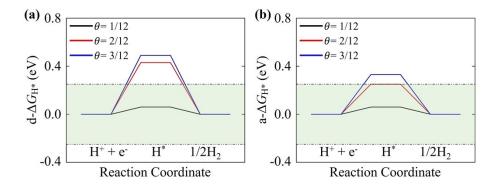

$\Delta G(\mathrm{pH}) = k_B T \ln(10) \times \mathrm{pH}$

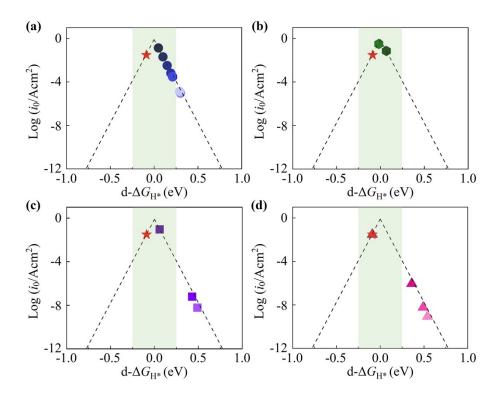
 $\Delta G(\text{pH})$ is an additional barrier for the adsorption of H atoms and is given by the pH value of the electrolyte. $\Delta G(\text{pH})$ value equals to 0 eV when pH = 0 and increases when the corresponding electrolyte is neutral or basic.

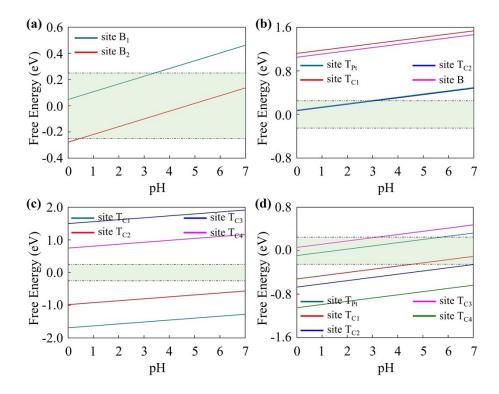

Supporting Figures

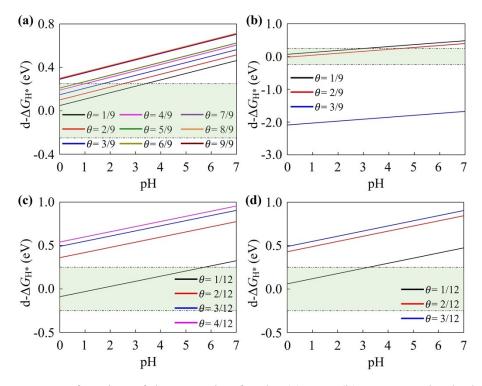

Figure S1. Top and side views of selected low-energy configurations for each monolayer ratio. The indigo and gray balls represent Pt and C atoms, respectively.

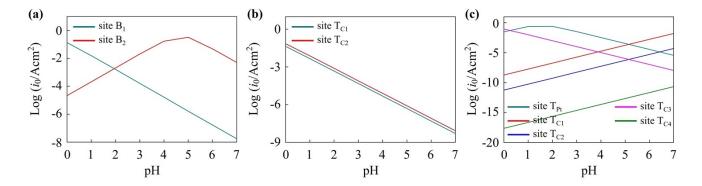

Figure S2. Phonon dispersive curves of the (a) PtC, (b) PtC_2 , (c) PtC_3 , and (d) PtC_4 monolayers. The phonon maximum frequencies of four monolayers are 1146, 1693, 1859, and 1540 cm⁻¹, respectively.


Figure S3. Snapshots of the final frame of the PtC_x monolayers at time of 10 ps during AIMD simulations under the temperatures of 300 K, (a) PtC, (b) PtC_2 , (c) PtC_3 , and (d) PtC_4 monolayers. The indigo and gray balls represent Pt and C atoms, respectively.


Figure S4. Band structures of the (a) PtC, (b) PtC_2 , (c) PtC_3 , and (d) PtC_4 monolayers. The red solid lines represent the Fermi level.


Figure S5. Electron localization function (ELF) map and crystal structures of the (a-b) PtC, (c) PtC_2 , (d-e) PtC_3 , and (f) PtC_4 monolayers. The indigo and gray balls represent Pt and C atoms, respectively.


Figure S6. Calculated differential Gibbs free energies as a function of H coverage of the PtC₄ monolayers for H adsorbed on T_{C3} site when pH = 0 at T = 300K. (a) d- ΔG_{H*} and (b) a- ΔG_{H*} . The highlighted in green denotes the free energy window of ± 0.25 eV.


Figure S7. Volcano curve of exchange current density i_0 of the (a) PtC, (b) PtC₂, (c) T_{C3} site, and (d) T_{Pt} site of the PtC₄ monolayers as a function of d- ΔG_{H^*} when pH = 0 at *T* = 300K. The value of Pt is inserted by a red star for comparison. The color changes from dark to light with increasing H coverage.

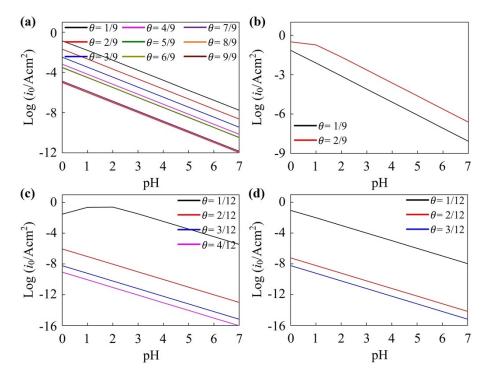

Figure S8. Free energy of Hydrogen adsorption as a function of the pH value for the (a) PtC, (b) PtC₂, (c) PtC₃, and (d) PtC₄ monolayers. A ± 0.25 eV window is indicated in green.

Figure S9. d- ΔG_{H^*} as a function of the pH value for the (a) PtC, (b) PtC₂, H adsorbed on (c) T_{Pt} site and (d) T_{C3} of PtC₄ monolayers. A ± 0.25 eV window is indicated in green.

Figure S10. Exchange current density as a function of the pH value for the (a) PtC, (b) PtC_2 , and (c) PtC_4 monolayers for H adsorption sites.

Figure S11. Exchange current density as a function of the pH value with various H coverage for the (a) PtC, (b) PtC₂, H adsorbed on (c) T_{Pt} site and (d) T_{C3} of PtC₄ monolayers based on d- ΔG_{H^*} .

Supporting Tables

Phase	Space	Lattice	Wyckoff			
1 mase	Group Parameters		Positions			
		(Å, °)		x	У	Z
PtC	$P2_1/m$	a = 22.25840	Pt(2e)	0.58453	0.75000	0.47651
		b = 2.58700	C(2e)	0.51699	0.75000	0.99528
		c = 2.79880				
		$\alpha = 90.0000$				
	$\beta = 87.9914$					
		$\gamma = 90.0000$				
PtC ₂	Pbam	<i>a</i> = 4.29970	Pt(4h)	0.27718	0.82813	0.50000
		b = 10.52200	$C_1(4h)$	0.82317	0.86806	0.50000
		c = 30.00000	$C_2(4h)$	0.84773	0.47230	0.50000
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 90.0000$				
PtC ₃	Pma2	<i>a</i> = 2.61830	Pt(2c)	0.25000	0.81524	0.50426
		<i>b</i> = 9.69370	$C_1(2c)$	0.25000	0.46281	0.46835
		c = 21.18650	$C_2(2c)$	0.75000	0.67505	0.47780
		$\alpha = 90.0000$	$C_{3}(2c)$	0.75000	0.98508	0.56060
	eta = 90.0000 $\gamma = 90.0000$					
PtC ₄	Pbam	a = 14.73520	Pt(4h)	0.57598	0.85443	0.50000
		b = 4.65800	$C_1(4h)$	0.29214	0.99290	0.50000
		c = 29.75800	C ₂ (4h)	0.37368	0.54335	0.50000
		$\alpha = 90.0000$	C ₃ (4h)	0.28489	0.67294	0.50000
		$\beta = 90.0000$	C ₄ (4h)	0.44532	0.71920	0.50000
		$\gamma = 90.0000$				

Table S1. Structural information of the predicted PtC_x (x = 1-4) monolayers.

Table S2. Cohesive energy (E_{coh}) of the predicted PtC_x (x = 1-4) monolayers.

Pt-C monolayer	$E_{\rm coh}({\rm eV})$
PtC	6.62
PtC ₂	6.41
PtC ₃	6.75
PtC ₄	6.79

	PtC		PtC ₂		PtC ₃		PtC ₄	
Atom	Charge	ΔG_{H^*}	Charge	ΔG_{H^*}	Charge	ΔG_{H^*}	Charge	ΔG_{H^*}
	(e)	(eV)	(e)	(eV)	(e)	(eV)	(e)	(eV)
Pt	0.42	B ₁ (Pt-Pt)	1.03	1.05	0.96	-	1.17	-0.09
Ρι	0.42	0.05			0.90		1.1/	
C	-0.42	B ₂ (Pt-Pt)	-0.67	0.08	-0.52	0.75	0.22	-0.52
C_1	-0.42	-0.28	-0.07	0.08			-0.32	
C_2			-0.36	0.06	-0.10	1.50	-0.34	-0.67
C				B(Pt-Pt)	0.60	-0.98	0.01	0.06
C ₃				1.12	-0.68	-1.69	-0.01	
C ₄							-0.50	-1.05

Table S3. Mulliken charge (|e|) analysis of the PtC_x (x = 1-4) monolayers.

Table S4. Calculated d- ΔG_{H^*} and a- ΔG_{H^*} (eV) varying different H atoms (*n*) adsorbed on the PtC_x (*x* = 1-4) monolayers.

n	PtC		PtC ₂		PtC ₃		PtC ₄			
site	B_1		T _{C2}		T _{C1}		T _{C3}		T _{Pt}	
1	0.05	0.05	0.06	0.06	0.75	0.75	0.06	0.06	-0.09	-0.09
2	0.10	0.07	-0.02	-0.02			0.43	0.25	0.36	0.13
3	0.15	0.10	-2.09	-0.07			0.49	0.33	0.49	0.25
4	0.19	0.12							0.54	0.33
5	0.21	0.14								
6	0.21	0.15								
7	0.29	0.17								
8	0.30	0.19								
9	0.29	0.20								

References

- 1 Y. Wang, J. Lv, L. Zhu and Y. Ma, CALYPSO: A method for Crystal Structure Prediction, *Comput. Phys. Commun.*, 2012, **183**, 2063–2070.
- 2 Y. Wang, J. Lv, L. Zhu and Y. Ma, Crystal Structure Prediction Via Particle-Swarm Optimization, *Phys. Rev. B.*, 2010, **82**, 094116.
- 3 G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using A Plane-Wave Basis Set, *Phys. Rev. B*, 1996, **54**, 11169–11186.
- J. Y. Jung, J. H. Park, Y. J. Jeong, K. H. Yang, N. K. Choi, S. H. Kim and W. J. Kim, Self-Consistent Equations Including Exchange and Correlation Effects, *Phys. Rev.*, 1965, 140, A1133–A1138.
- 5 J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
- 6 S. Grimme, Accurate Description of Van Der Waals Complexes by Density Functional Theory Including Empirical Corrections, *J. Comput. Chem.*, 2004, **25**, 1463–1473.
- G. J. Martyna, M. L. Klein and M. Tuckerman, Nosé-Hoover Chains: The Canonical Ensemble Via Continuous Dynamics, J. Chem. Phys., 1992, 97, 2635–2643.
- Y. Shao, X. Shi and H. Pan, Electronic, Magnetic, and Catalytic Properties of Thermodynamically Stable Two-Dimensional Transition-Metal Phosphides, *Chem. Mater.*, 2017, 29, 8892–8900.
- 9 B. Zhang, X. Fu, L. Song and X. Wu, Improving Hydrogen Evolution Reaction Performance by Combining Ditungsten Carbide and Nitrogen-Doped Graphene: A First-Principles Study, *Carbon N. Y.*, 2021, **172**, 122–131.