Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Supplementary Information

Impact of Nitrogen Configuration on the Electronic Properties of Tailored Triphenilamine Derivatives as Hole Transport Materials for Perovskite Solar Cells: A Computational Chemistry Study

Raul Flores, Nora Aydeé Sánchez-Bojorge, Juan Pedro Palomares-Báez*, Linda-Lucila Landeros-Martínez and Luz María Rodríguez-Valdez*

Laboratorio de Química Computacional, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Campus UACH II, Chihuahua, Chihuahua, C.P. 31125, México; E-mail: <u>lmrodrig@uach.mx</u>, <u>ppalomares@uach.mx</u>

Table SI 1. Electronic couplings of n-TPAM dimers

_	π -nnker	conformer	J _{eff} (n) mev		
		SS	ωB	97Xeyc	se	SS
			vDZP	6-311G(d,p)		
	A	1	144.13	142.95		
		2	124.47	123.42		
		3	109.25	108.12		
		4	38.21	37.69		
		5	22.74	22.79		
	В	1	157.24	155.57		
		2	150.38	148.64		
		3	109.68	108.96		
		4	107.73	107.43		
		5	39.55	34.06		
	С	2	147.39	146.33		
		1	145.17	144.26		
		3	123.95	123.02		
		4	4.53	4.82		
	_					
	D	1	161.38	159.98		
		2	161.35	158.88		
		3	45.04	45.98		
		4	16.04	16.98		
	Б	2	155.10	152.00		
	E	2	155.12	153.98		
		1	148.99	14/.88		
		3	112.71	110.80		
		4	43.34	43.59		
	F	2	161 55	160 /1		
	Г	∠ 1	101.33	100.41		
		1	139.30	130.27		
		3	39.38	39.90		

calculated with ω -opt-B97X-3c/6-311G(d,p) and ω -opt-Table **S9**7X Representation of the second state conforDIPROsemetilods deposited on Zenodo at https://doi.org/10.5281/zenodo.11391494 (1)

Table SI 2. Reorganisation energies of n-TPAM, YZ22, and YZ18 calculated with w-opt-B97X-3c/vDZP, w-opt-B97X-3c/6-311G(d,p) and M06/6-311G(d,p)

	ω-opt-B97X-3c						
	vDZP	6-311G(d,p)	6-311G(d,p)				
A-TPAM	346.31	320.60	189.92				
B-TPAM	268.76	271.03	191.70				
C-TPAM	283.34	279.53	183.05				
D-TPAM	321.84	311.21	185.83				
E-TPAM	304.07	302.56	174.66				
F-TPAM	291.25	302.54	161.32				
YZ22	149.78	148.91	128.20				
YZ18	187.81	179.51	133.80				

Figure SI 1. Labelling of π - π stacked rings of n-TPAM, YZ18, and YZ22 dimers.

Table SI 4. Average distance between ring centres $\binom{K_c}{o}$ of π - π stacked rings obtained from geometry optimisation at the dftb3-3ob-MBD level of theory; a, b, and c correspond to the Figure SI 1 labelling.

		, u, o, u	ina e comes	pond to the Figure SFF hasening.	
conformer	a	b	с		

	1	4.25	4.00	3.93	ſ	1
	2	4.26	4.07	4.11		
A-TPAM	3	4.18	4.49	4.71	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
	4	4.19	4.15	4.38		~X
					К	
	5	3.94		3.60		
						>
	1	4.22	3.96	3.74	کہ	<u>}</u>
	1	4.22	3.96	3.74	1	<u>}</u>
	1 2	4.22 4.22	3.96 4.00	3.74 4.04	1	}
В-ТРАМ	1 2 3	4.22 4.22 4.27	3.96 4.00 4.16	3.74 4.04 3.86	1)
B-TPAM	1 2 3	4.22 4.22 4.27	 3.96 4.00 4.16 	 3.74 4.04 3.86 	1	}

					К	/
	5	4.18	4.22	3.87	J	~ (
	1	4.27	3.93	3.72		
	2	4.28	3.95	3.96		<i>}</i> ¹
C-TPAM	3	4.41	4.04	3.64	-	~ 4-
	4			3.51	{ {`	
	1	4.22	3.92	3.61	7.	
	2	4.26	3.88	3.91		~
D-TPAM	_		2.00		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~

					\rightarrow	Second Second
	4				<	~ >
	1	4.24	3.97	3.72	Ŧ	4
	2	4.26	3.90	3.59	¢	~ 7
E-TPAM	3	4.20	4.02	3.83	1	_ <u>_</u>
	4	4.15	4.11	4.03	ſ	}
	1	4.21	3.94	3.58	I	7
F-TPAM	2	4.21	4.30	3.90	1	1
	3					

				٢	 \searrow
Average	4.22	4.05	3.86		

cnf		R _c		$\overline{ heta}_{a}$			
		r2scan-3c	Dftb3- MBD	r2scan-3c	Dftb3-MBD		
А	s	4.40	4.18	21.0	4.6		
	e	4.30	4.10	28.9	3.8		
В	s	4.32	4.12	25.6	3.8		
	e	4.23	4.04	24.7	4.4		
С	s	4.43	4.12	25.6	4.1		
	e	4.39	4.05	26.3	3.3		
D	S	4.26	4.08	21.7	3.2		
	e	4.21	3.99	18.1	3.9		
Е	S	4.38	4.21	26.5	4.8		
	e	4.23	4.04	26.2	4.0		
F	S	4.33	4.16	27.2	4.1		
	e	4.19	3.99	23.0	4.3		
YZ22	S	4.22	4.01	24.1	3.8		
	e	4.31	3.97	19.8	3.3		
YZ18	e	4.26	3.98	22.5	3.8		
	s	4.24	4.00	22.5	4.4		

 Table SI 5. Geometrical characteristics of YZ18, YZ22, and n-TPAM dimers calculated with r2scan-3c/def2-mTZVPP geometry optimisations.

^aAverage angle between the planes of the π - π stacked rings of end-cap TPAM

Figure SI 2 Contour plots of electron spin densities and MBIS fragment charge populations of cation n-TPAM, YZ22, and YZ18. The numbers on the left and right of each contour plot indicate the TPAM fragment charge, and the number in the middle is the core charge. a) ω B97X-3c/vDZP b)M06/6-311G(d,p) c) ω -opt-B97X-3c/vDZP

Table SI 6. Wavelength of the lowest energy excitation(λ_{max}), oscillator strength, and the HOMO(H0)-LUMO(L0) transitions of n-TPAM, YZ22, and YZ18 calculated with ω -opt-B97X-3c/vDZP

	$\lambda_{max}(nm)$	Oscilator strength(f)	H0 → L0 electronic transitions (%)
A-TPAM	331.4	1.2221	67.3
B-TPAM	349.9	0.9950	72.2
C-TPAM	412.1	0.1160	19.3
D-TPAM	385.7	0.6913	78.9
E-TPAM	394.3	0.7514	75.2
F-TPAM	470.6	0.0398	6.7
YZ18	329.6	2.4885	62.1
YZ22	336.2	2.3432	64.0

Figure SI 3 Scatter plot of the correlation coefficient ($R^2 = 0.9957$) between the charge transfer integral (t) computed with $\omega B97X$ -3c/vDZP and M06/6-311G(d,p) functionals using the DIPRO method.

Figure SI 4 UV-Vis absorption spectrum of n-TPAM, YZ22, and YZ18 molecules computed using 40 roots with TD-DFT ω -opt-B97X-3c/vDZP.