Supporting Information for

Negative thermal expansion and linear compressibility in 1H-imidazol-3-ium 2hydroxybenzoate with a helical network of hydrogen bonds

Sylwia Zięba, *1 Alina T. Dubis, 2 Michalina Rusek, 3 Andrzej Katrusiak, 3

Andrzej Gzella,⁴ Andrzej Łapiński¹

¹Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland

²Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Bialystok, Poland

³Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland

⁴Department of Organic Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland

*sylwia.zieba@ifmpan.poznan.pl

Figures

Figure S1. The second (red) and third-order (blue) Birch-Murnaghan equation of state for SalImi.

Figure S2. Two projections of chains of molecules linked by hydrogen bonds C3a–H3aa…O10bⁱⁱ into layers parallel to the *ab* plane.

Figure S3. A view of the unit cell of **SalImi** showing the double layers of molecules parallel to the *ab* plane. Adjacent double layers are shown in black and gray for clarity of drawing. The symmetry codes are explained in Table 1 and Fig. 3. *Cg*1 is a phenylene ring centroid; Ph and Im are phenylenes and imidazolium rings. Symmetry codes: (iii) 3/2-x, 1-y, 1/2+z, (iv) 1-x, 1-y, 1-z.

Figure S4. (a) The C–H···*Cg* and (b) π ··· π interactions; the shaded area highlights the degree of overlap of the Ph and Im rings; *Cg*1 is phenylene ring centroid; Ph and Im are phenylene and imidazolium rings. H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry code: (iv) 1–x, 1–y, 1–z.

Figure S5. Raman spectra of imidazolium salicylate under temperature in three spectral regions: 20–220 (left), 760–920 (middle), and 1420–1660 cm⁻¹ (right).

Figure S6. Raman spectra of imidazolium salicylate under pressure in two spectral regions: 950–650 (left) and 180–50 cm⁻¹ (right).

Figure S7. Calculated FT-IR (a) and Raman (b) spectra of imidazolium and acid ions; scaling factor of 0.97, DFT method: ω B97XD/6-311++G(d,p).

Figure S8. Temperature evolution of the lengths of $C \cdots O$ in the C–H $\cdots O$ hydrogen bond (a) and $O \cdots O$ in the O–H $\cdots O$ hydrogen bond (b). The evolution of the position of the bands at 757 and 768cm⁻¹ (a) and 1346cm⁻¹ (b) is shown on the right.

Figure S9. Pressure evolution of C···O lengths in C–H···O hydrogen bond (a) and O···O in O–H···O hydrogen bond (b).

Figure S10. Crystal structure of imidazolium salicylate. The dotted lines denote the axes where the imidazolium ion rotates in the crystal.

Figure S11. Values of anharmonic factor $\psi(A)$ (a), damping parameter $\Delta v/v_0$, and the maximum absorption energy $F[A_c(v_0)]$ (b) of imidazolium salicylate as a function of temperature.

<u>Tables</u>

Table S1. Crystal data, data collection, and structure refinement for SalImi at different temperatures at atmospheric pressure.

Table S2. Crystal data, data collection, and structure refinement for **SalImi** at different pressures at room temperature (*T*=293.02 K).

 Table S3. Cell parameters (Å, °) for SalImi at different temperatures (K).

Table S4. Cell parameters (Å, °) for **SalImi** at different pressures (GPa).

Table S5. The second and third-order Birch-Murnaghan coefficient of volume under pressure for SalImi: B_0 (GPa) - the bulk modulus, B_0 ' the bulk modulus pressure derivative, V_0 (Å3) the unit cell volume at ambient conditions, and with σ their standard errors.

Table S6. Hydrogen-bonds and C—H···Cg interactions (Å, °) in the crystal structure of **SalImi** at different temperatures.

Table S7. Hydrogen bond geometry (Å, °) for SalImi at different pressures.

Table S8. SalImi QTAiM parameters (in atomic unit) as a function of temperature corresponding to the H···O bond critical point (BCPs), the electron density at BCP ρ_{BCP} ; Laplacian of electron density at BCP, $\Delta \rho_{BCP}$; total electron energy density at BCP, H_{BCP} and the components of the H_{BCP} : kinetic electron energy density, G_{BCP} ; potential electron energy density, V_{BCP} , the hydrogen bond energy, E_{HB} (kcal·mol⁻¹).

Table S9. SalImi QTAiM parameters (in atomic unit) as a function of pressure corresponding to the H···O bond critical point (BCPs), the electron density at BCP ρ_{BCP} ; Laplacian of electron density at BCP, $\Delta^2 \rho_{BCP}$; total electron energy density at BCP, H_{BCP} and the components of the H_{BCP} : kinetic electron energy density, G_{BCP} ; potential electron energy density, V_{BCP} , the hydrogen bond energy, E_{HB} .

Table S10. Parameters of the helicoid: a_h (semi-major axis), b_h (semi-minor axis), Sh_h (helix pitch), c_h (focal length of the ellipse), e_h (eccentricity of the ellipse), l_h (circumference of the ellipse), and S_h (area of the ellipse).

Table S11. The assignment of the selected vibrational bands observed in FT-IR and Raman spectra of SalImi.

Table S12. The assignment of the selected bands observed in Raman spectra in the phonon spectral range of SalImi.

Table S13. Lengths and angles of the bonds in the imidazole ion as a function of the temperature. Note: The atomic labeling scheme is shown in Figure 1.

Table S14. Lengths and angles of the bonds in the imidazole ion as a function of the pressure. Note: The atomic labeling scheme is shown in Figure 1.

Figure S1. The second (red) and third-order (blue) Birch-Murnaghan equation of state for SalImi. \circ V – Experimental Cell Volume; The red and blue solid lines are, respectively, fits of the second (described as V_{2nd BM}) and third-order B-M equation (V_{3nd BM}) to the experimental points.

Figure S2. Two projections of chains of molecules linked by hydrogen bonds C3a–H3aa…O10bⁱⁱ into layers parallel to the *ab* plane.

Figure S3. A view of the unit cell of **SalImi** showing the double layers of molecules parallel to the *ab* plane. Adjacent double layers are shown in black and gray for clarity of drawing. The symmetry codes are explained in Table 1 and Fig. 3a. Cg1 is a phenylene ring centroid; Ph and Im are phenylenes and imidazolium rings. Symmetry codes: (iii) 3/2-x, 1-y, 1/2+z, (iv) 1-x, 1-y, 1-z.

Figure S4. (a) The C-H···*Cg* and (b) π ··· π interactions; the shaded area highlights the degree of overlap of the Ph and Im rings; *Cg*1 is phenylene ring centroid; Ph and Im are phenylene and imidazolium rings. H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry code: (iv) 1–x, 1–y, 1–z.

Figure S5. Raman spectra of imidazolium salicylate under temperature in three spectral regions: 20–220 (left), 760–920 (middle), and 1420–1660 cm⁻¹ (right).

Figure S6. Raman spectra of imidazolium salicylate under pressure in two spectral regions: 950–650 (left) and 180–50 cm⁻¹ (right).

Figure S7. Calculated FT-IR (a) and Raman (b) spectra of imidazolium and acid ions; scaling factor of 0.97, DFT method: ω B97XD/6-311++G(d,p).

Figure S8. Temperature evolution of the lengths of C···O in the C–H···O hydrogen bond (a) and O···O in the O–H···O hydrogen bond (b). The evolution of the position of the bands at 757 and 768cm⁻¹ (a) and 1346cm⁻¹ (b) is shown on the right.

 $\label{eq:Figure S9.} Figure \ S9. Pressure \ evolution \ of \ C \cdots O \ lengths \ in \ C-H \cdots O \ hydrogen \ bond \ (a) \ and \ O \cdots O \ in \ O-H \cdots O \ hydrogen \ bond \ (b).$

Figure S10. Crystal structure of imidazolium salicylate. The dotted lines denote the axes where the imidazolium ion rotates in the crystal.

Figure S11. Values of anharmonic factor $\psi(A)$ (a), damping parameter $\Delta v/v_0$, and the maximum absorption energy $F[A_c(v_0)]$ (b) of imidazolium salicylate as a function of temperature.

Table S1. Crystal data, data collection, and structure refinement for SalImi at different temperatures at atmospheric pressure

Crystal data					
Chemical formula	C10H10N2O3	C10H10N2O3	C10H10N2O3	C10H10N2O3	C10H10N2O3
$M_{ m r}$	206.20	206.20	206.20	206.20	206.20
Crystal system, space group		(Orthorhombic, Pbc	a	
Temperatur (K)	100.0(1)	130.0(1)	180.0(1)	240.0(1)	300.0(1)
Unit cell parameters					
a (Å)	11.0676(5)	11.0905(6)	11.1043(5)	11.0988(6)	11.0777(11)
<i>b</i> (Å)	11.0227(5)	10.9922(5)	10.9664(5)	10.9361(5)	10.9375(9)
<i>c</i> (Å)	16.1520(7)	16.1833(8)	16.3069(9)	16.4701(9)	16.6880(15)
α, β, γ (°)	90 ,90, 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90
$V(Å^3)$	1970.45(15)	1972.89(16)	1985.76(17)	1999.10(18)	2022.0(3)
Ζ	8	8	8	8	8
<i>F</i> (000)	864	864	864	864	864
$D_{\rm x}$ (Mg m ⁻³)	1.390	1.388	1.379	1.370	1.355
Radiation type, $\lambda(A)$			Mo <i>Kα</i> , 0.71073		
$\mu (\mathrm{mm}^{-1})$	0.105	0.105	0.104	0.103	0.102
Crystal shape			Block		
Color			Colourless		
Crystal size (mm)			0.30 x 0.26 x 0.13		
Data collection					
Diffractometer	SuperNova,	SuperNova,	SuperNova,	SuperNova,	SuperNova,
	Dual Mo, Atlas	Dual Mo, Atlas	Dual Mo, Atlas	Dual Mo, Atlas	Dual Mo, Atlas
Absorption correction	Multi-scan (Crys	sAlis PRO).			
	Empirical abso	orption correction	using spherical har	monics, implement	ted in SCALE3
T , T	ABSPACK sc	aling algorithm.	0.640 1.000	0 626 1 000	0.582 1.000
I min, I max	0.700, 1.000	0.028, 1.000	0.040, 1.000	0.020, 1.000	0.382, 1.000
and observed $[I > 2\sigma(I)]$	16383, 2561,	16447, 2578,	16741, 2567,	16879, 2584,	15447, 2617,
reflections	2214	0170		4040	1000
		21/3	2058	1913	1//5
Measurement method		21/3	2058 scans	1913	1//5
Measurement method $R_{\rm int}$	0.0274	ω 0.0360	2058 scans 0.0340	0.0334	0.0375
Measurement method R_{int} $\theta_{\text{max}}, \theta_{\text{min}}$ (°)	0.0274 29.51, 2.90	2173 ω 0.0360 29.60, 2.52	2058 scans 0.0340 29.64, 2.89	0.0334 29.67, 2.89	0.0375 29.66, 2.44
Measurement method R_{int} $\theta_{max}, \theta_{min}$ (°) Structure refinement	0.0274 29.51, 2.90	2173 ω 0.0360 29.60, 2.52	2058 scans 0.0340 29.64, 2.89	0.0334 29.67, 2.89	0.0375 29.66, 2.44
Measurement method R_{int} $\theta_{max}, \theta_{min}$ (°) Structure refinement $P_{1}[E^{2} > 2\pi(E^{2})] = P_{1}(E^{2}) = C$	0.0274 29.51, 2.90	2173 ω 0.0360 29.60, 2.52	2058 scans 0.0340 29.64, 2.89	0.0334 29.67, 2.89	0.0375 29.66, 2.44
Measurement method R_{int} $\theta_{\text{max}}, \theta_{\text{min}}$ (°) Structure refinement $R [F^2 \ge 2\sigma(F^2)], wR(F^2), S$	0.0274 29.51, 2.90 0.0400, 0.1033, 1.080	2173 ω 0.0360 29.60, 2.52 0.0450, 0.1222, 1.087,	2058 scans 0.0340 29.64, 2.89 0.0465, 0.1153, 1.077	0.0334 29.67, 2.89 0.0493, 0.1362, 1.074	0.0375 29.66, 2.44 0.0524, 0.1418, 1.067
Measurement method R_{int} $\theta_{\text{max}}, \theta_{\text{min}}$ (°) Structure refinement $R [F^2 \ge 2\sigma(F^2)], wR(F^2), S$ No. of reflections	0.0274 29.51, 2.90 0.0400, 0.1033, 1.080 2561	2173 ω 0.0360 29.60, 2.52 0.0450, 0.1222, 1.087, 2578	2058 scans 0.0340 29.64, 2.89 0.0465, 0.1153, 1.077 2567	0.0334 29.67, 2.89 0.0493, 0.1362, 1.074 2584	0.0375 29.66, 2.44 0.0524, 0.1418, 1.067 2617
Measurement method R_{int} $\theta_{\text{max}}, \theta_{\text{min}} (^{\circ})$ Structure refinement $R [F^2 \ge 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters	0.0274 29.51, 2.90 0.0400, 0.1033, 1.080 2561 148	2173 ω 0.0360 29.60, 2.52 0.0450, 0.1222, 1.087, 2578 148	2058 scans 0.0340 29.64, 2.89 0.0465, 0.1153, 1.077 2567 149	0.0334 29.67, 2.89 0.0493, 0.1362, 1.074 2584 149	0.0375 29.66, 2.44 0.0524, 0.1418, 1.067 2617 149
Measurement method R_{int} $\theta_{max}, \theta_{min}$ (°) Structure refinement $R [F^2 \ge 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)	0.0274 29.51, 2.90 0.0400, 0.1033, 1.080 2561 148 0.291, -0.267	2173 ω 0.0360 29.60, 2.52 0.0450, 0.1222, 1.087, 2578 148 0.261, -0.313	2058 scans 0.0340 29.64, 2.89 0.0465, 0.1153, 1.077 2567 149 0.364, -0.182	0.0334 29.67, 2.89 0.0493, 0.1362, 1.074 2584 149 0.323, -0.181	0.0375 29.66, 2.44 0.0524, 0.1418, 1.067 2617 149 0.249, -0.219
Measurement method R_{int} $\theta_{max}, \theta_{min}$ (°) Structure refinement $R [F^2 \ge 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³) Extinction correction	0.0274 29.51, 2.90 0.0400, 0.1033, 1.080 2561 148 0.291, -0.267	2173 ω 0.0360 29.60, 2.52 0.0450, 0.1222, 1.087, 2578 148 0.261, -0.313 $F_c^* = kF_c[1$	2058 scans 0.0340 29.64, 2.89 0.0465, 0.1153, 1.077 2567 149 0.364, -0.182 + 0.001 $xF_c^2\lambda^3$ /si	1913 0.0334 29.67, 2.89 0.0493, 0.1362, 1.074 2584 149 0.323, -0.181 n (2θ)] ^{-1/4}	0.0375 29.66, 2.44 0.0524, 0.1418, 1.067 2617 149 0.249, -0.219

Table S2. Crystal data, data collection	, and structure refinement fo	r SalImi at different pressures	at room temperature (T=293.02 K).
---	-------------------------------	---------------------------------	-----------------------------------

Chemical formula	$C_{10}H_9N_2O_3$	C10H9N2O3	C10H9N2O3	C10H9N2O3	$C_{10}H_9N_2O_3$
Formula weight	206.19	206.19	206.19	206.19	206.19
Pressure (GPa)	0.16	0.95	1.30	1.67	2.27
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pbca	Pbca	Pbca	Pbca	Pbca
Unit cell parameters (Å, °)	a=11.2640(13) b=10.812(11) c=16.025(2)	a=11.4739(8) b=10.652(7) c=15.1725(13)	a=11.5502(8) b=10.596(7) c=14.8160(13)	a=11.562(3) b=10.656(19) c=14.409(3)	a=11.540(5) b=10.49(4) c=14.153(8)
Volume (Å ³)	1952(2)	1854.4(12)	1813.3(12)	1775(3)	1713(7)
Ζ	8	8	8	8	8
<i>F</i> (000)	864.0	864.0	864.0	864.0	864.0
Calculated	1.404	1.477	1.511	1.543	1.599
density (g cm ⁻³) Absorption coefficient (mm ⁻¹)	0.106	0.111	0.114	0.116	0.120
Crystal dimensions	5		0.20 x 0.18 x 0.1	3	
Crystal dimensions [mm] Θ Range for data	4.625 to 26.634	4.773to 24.757	0.20 x 0.18 x 0.1 4.841 to 21.998	3 4.495 to 19.579	4.956 to 27.269
 (nmin) Crystal dimensions [mm] Θ Range for data collection (°) Max./Min. indices Ref. 	h = 4.625 to 26.634 $h:-13 \rightarrow 13$ $k:-4 \rightarrow 4$ $l:-19 \rightarrow 19$ 7165/792	4.773to 24.757 h:-14→14 k:-4→4 l:-18→18 7603/744	0.20 x 0.18 x 0.1 4.841 to 21.998 h:-14→14 k:-4→4 l:-18→18 7442/732	3 4.495 to 19.579 h:-14 \rightarrow 14 k:-4 \rightarrow 4 l:-17 \rightarrow 17 6634/612	4.956 to 27.269 h:-14→14 k:-3→3 l:-17→17 5289/576
(init) (Crystal dimensions [mm] Θ Range for data collection (°) Max./Min. indices Ref. collected/unique Observed reflections [$L \ge 2\sigma(D)$]	h = 4.625 to 26.634 $h:-13 \rightarrow 13$ $k:-4 \rightarrow 4$ $1:-19 \rightarrow 19$ 7165/792 1007	4.773 to 24.757 h:-14→14 k:-4→4 l:-18→18 7603/744 1207	$0.20 \ge 0.18 \ge 0.14$ 4.841 to 21.998 h:-14 \rightarrow 14 k:-4 \rightarrow 4 l:-18 \rightarrow 18 7442/732 1257	3 4.495 to 19.579 h:-14 \rightarrow 14 k:-4 \rightarrow 4 l:-17 \rightarrow 17 6634/612 702	4.956 to 27.269 h:-14 \rightarrow 14 k:-3 \rightarrow 3 l:-17 \rightarrow 17 5289/576 581
(init) Crystal dimensions [mm] Θ Range for data collection (°) Max./Min. indices Ref. collected/unique Observed reflections [$I \ge 2\sigma(I)$] R _{int}	4.625 to 26.634 h:-13→13 k:-4→4 l:-19→19 7165/792 1007 0.1218	4.773 to 24.757 h:-14 \rightarrow 14 k:-4 \rightarrow 4 l:-18 \rightarrow 18 7603/744 1207 0.0830	$0.20 \ge 0.18 \ge 0.14$ 4.841 to 21.998 h:-14 \rightarrow 14 k:-4 \rightarrow 4 l:-18 \rightarrow 18 7442/732 1257 0.0787	3 4.495 to 19.579 h:-14 \rightarrow 14 k:-4 \rightarrow 4 l:-17 \rightarrow 17 6634/612 702 0.1062	4.956 to 27.269 h:-14→14 k:-3→3 l:-17→17 5289/576 581 0.1165
(Infil) Crystal dimensions [mm] Θ Range for data collection (°) Max./Min. indices Ref. collected/unique Observed reflections [$I \ge 2\sigma(I)$] R _{int} Parameters	4.625 to 26.634 h:-13→13 k:-4→4 l:-19→19 7165/792 1007 0.1218 138	4.773 to 24.757 h:-14 \rightarrow 14 k:-4 \rightarrow 4 1:-18 \rightarrow 18 7603/744 1207 0.0830 137	$0.20 \ge 0.18 \ge 0.14$ 4.841 to 21.998 h:-14 \rightarrow 14 k:-4 \rightarrow 4 l:-18 \rightarrow 18 7442/732 1257 0.0787 137	3 4.495 to 19.579 h:-14 \rightarrow 14 k:-4 \rightarrow 4 1:-17 \rightarrow 17 6634/612 702 0.1062 137	4.956 to 27.269 h:-14→14 k:-3→3 l:-17→17 5289/576 581 0.1165 118
(Inff) (Crystal dimensions [mm] Θ Range for data collection (°) Max./Min. indices Ref. collected/unique Observed reflections $[I \ge 2\sigma(I)]$ R _{int} Parameters final R indices $[I>2\sigma(I)]$ R indices (all data) goodness of fit of F^2 Largest diff. peak	a 4.625 to 26.634 h:-13→13 k:-4→4 l:-19→19 7165/792 1007 0.1218 138 $R_1=0.0743$ $wR_2=0.1879$ $R_1=0.1702$ $wR_2=0.2554$ 1.012 a 0.13/-0.14	4.773 to 24.757 h:-14 \rightarrow 14 k:-4 \rightarrow 4 l:-18 \rightarrow 18 7603/744 1207 0.0830 137 $R_1=0.0535$ $wR_2=0.1264$ $R_1=0.1336$ $wR_2=0.1688$ 1.014 0.12/-0.17	$\begin{array}{c} 0.20 \ge 0.18 \ge 0.14 \\ 4.841 \ \text{to} \ 21.998 \\ \text{h:} -14 \rightarrow 14 \\ \text{k:} -4 \rightarrow 4 \\ 1 \ge -18 \rightarrow 18 \\ 7442/732 \\ 1257 \\ 0.0787 \\ 137 \\ R_1 = 0.0553 \\ wR_2 = 0.1273 \\ R_1 = 0.1407 \\ wR_2 = 0.1712 \\ 1.018 \\ 0.13/-0.16 \end{array}$	3 4.495 to 19.579 h:-14 \rightarrow 14 k:-4 \rightarrow 4 l:-17 \rightarrow 17 6634/612 702 0.1062 137 $R_1=0.0743$ $wR_2=0.1963$ $R_1=0.2221$ $wR_2=0.2991$ 1.018 0.14/-0.16	4.956 to 27.269 h:-14 \rightarrow 14 k:-3 \rightarrow 3 l:-17 \rightarrow 17 5289/576 581 0.1165 118 R_1 =0.0987 wR_2 =0.2377 R_1 =0.2370 wR_2 =0.3536 1.048 0.21/-0.18

b VTemperature а с α β γ 1970.46(15) 100 11.0676(5) 11.0227(5) 90.00 90.00 90.00 16.1520(7) 11.0905(6) 10.9922(5) 16.1833(8) 90.00 90.00 90.00 1972.89(16) 130 18011.1043(5) 10.9664(5) 16.3069(9) 90.00 90.00 90.00 1985.76(17) 11.0988(6) 10.9361(5) 16.4701(9) 90.00 90.00 90.00 1999.10(18) 240 10.9375(9) 16.6880(15) 90.00 90.00 90.00 2022.0(3) 300 11.0777(11)

Table S3. Cell parameters (Å, °) for SalImi at different temperatures (K).

Table S4. Cell parameters (Å, °) for SalImi at different pressures (GPa).

Pressure	a	b	с	α	β	γ	V
0.16	11.2640(13)	10.812(11)	16.025(2)	90.00	90.00	90.00	1952(2)
0.95	11.4739(8)	10.652(7)	15.1725(13)	90.00	90.00	90.00	1854.4(12)
1.30	11.5502(8)	10.596(7)	14.8160(13)	90.00	90.00	90.00	1813.3(12)
1.67	11.562(3)	10.656(19)	14.409(3)	90.00	90.00	90.00	1775(3)
2.27	11.540(5)	10.49(4)	14.153(8)	90.00	90.00	90.00	1713(7)

Table S5. The second and third-order Birch-Murnaghan coefficient of volume under pressure for SalImi: B_0 (GPa) - the bulk modulus, B_0 ' the bulk modulus pressure derivative, V_0 (Å³) the unit cell volume at ambient conditions, and with σ their standard errors.

	B ₀ (GPa)	σB ₀ (GPa)	V ₀ (Å ³)	$\sigma V_0 (Å^3)$	B0'	σB_0 '
2nd	11.7	0.5	1985.4	7.7	4.0	0
3nd	14.5	0.3	1973.1	1.5	1.8	0.2

Temperature (K)	D—H···A	<i>D</i> –Н (Å)	Н… <i>А</i> (Å)	<i>D</i> … <i>A</i> (Å)	D–H…A (°)
		0.93(2)	1.77(2)	2.6903(13)	174.6(18)
		0.95(2)	1.74(2)	2.6779(13)	165.7(19)
100		0.98(2)	1.61(2)	2.5300(13)	155(2)
		0.95	2.41	3.2545(16)	148
		0.93(2)	1.77(2)	2.6950(15)	173(2)
120		0.93(2)	1.77(2)	2.6798(15)	166(2)
130		0.96(2)	1.62(2)	2.5285(14)	156(2)
		0.95	2.42	3.2537(18)	147
	N1a–H1a…O9b	0.92(2)	1.80(2)	2.7079(16)	172(2)
100	N2a–H2a…O8b' O10b–H10b…O9b C3a–H3aa…O10b ⁱⁱ	0.93(2)	1.78(2)	2.6873(17)	167(2)
180		0.98(2)	1.60(2)	2.5275(16)	156(2)
		0.95	2.44	3.266(2)	145
	-	0.92(3)	1.81(3)	2.7199(19)	171(2)
240		0.93(2)	1.77(2)	2.692(2)	170(2)
240		1.01(2)	1.56(2)	2.5245(19)	157(2)
		0.94	2.47	3.278(2)	144
	-	0.94(3)	1.80(3)	2.731(2)	169(2)
200		0.92(3)	1.79(3)	2.701(2)	170(3)
300		1.05(3)	1.54(3)	2.525(2)	156(3)
		0.93	2.51	3.303(3)	143
Tomporatura (V)	C HunCa	C–H	H…Cg	C <i>Cg</i>	C–H…Cg
Temperature (K)	С-п…Сg	(Å)	(Å)	(Å)	(°)
100		0.95	2.68	3.5667(14)	156
130		0.95	2.69	3.5777(16)	156
180	C2a–H2aa…Cg1 ⁱⁱⁱ	0.95	2.72	3.6067(18)	156
240	_	0.94	2.77	3.645(2)	156
300		0.93	2.82	3.689(2)	156

Table S6. Hydrogen-bonds and C–H···*Cg* interactions (Å, °) in the crystal structure of **SalImi** at different temperatures.

Symmetry codes: (i) -1/2+x,3/2-y,1-z; (ii) -1/2+x,1/2-y,1-z; (iii) 3/2-x,1-y,1/2+z. Cg1 is phenyl ring centroid.

Table S7. Hydrogen bond geometry (Å, °) for SalImi at different pressures.

Pressure (GPa)	D-H···A	D-H	H…A	$D \cdots A$	D–H··· A
		0.86(1)	1.89(1)	2.737(13)	169.9(12)
		0.86(1)	1.84(1)	2.700(20)	174.2(8)
0.16		0.82(1)	1.85(1)	2.544(15)	141.3(10)
		0.93(2)	2.35(1)	3.120(30)	140.2(7)
		0.86(1)	1.86(1)	2.698(9)	168.0(8)
.		0.86(1)	1.86(1)	2.711(15)	168.7(7)
0.95		0.82(1)	1.81(1)	2.527(11)	144.7(8)
		0.93(2)	2.38(1)	3.138(19)	138.9(5)
	N1a-H1a…O9b	0.86(1)	1.86(1)	2.697(10)	163.2(9)
	N2a–H2a \cdots O8b ⁱ	0.86(1)	1.84(1)	2.680(17)	166.6(7)
1.30	O10b−H10b··O9b	0.82(1)	1.85(1)	2.548(9)	142.4(8)
	C34 11344 0100	0.93(2)	2.33(1)	3.061(21)	135.3(6)
		0.86(1)	1.86(1)	2.685(18)	161.2(15)
		0.86(2)	1.85(1)	2.682(31)	163.5(11)
1.67		0.82(1)	1.90(1)	2.561(20)	136.5(13)
		0.93(3)	2.28(1)	3.011(42)	135.2(12)
	-	0.86(1)	1.88(1)	2.701(18)	159.4(16)
		0.86(3)	1.83(1)	2.663(33)	164.5(12)
2.27		0.82(1)	1.81(1)	2.513(21)	143.5(13)
		0.93(4)	2.28(1)	2.990(40)	132.9(12)

Symmetry codes: (i) -1/2+x,3/2-y,1-z; (ii) -1/2+x,1/2-y,1-z; (iii)1/2-x,1-y,1/2+z.

Table S8. SalImi QTAiM parameters (in atomic unit) as a function of temperature corresponding to the H····O bond critical point (BCPs), the electron density at BCP ρ_{BCP} ; Laplacian of electron density at BCP, $\Delta\rho_{BCP}$; total electron energy density at BCP, H_{BCP} and the components of the H_{BCP} : kinetic electron energy density, G_{BCP} ; potential electron energy density, V_{BCP} , the hydrogen bond energy, E_{HB} (kcal·mol⁻¹).

	<i>T</i> (K)	$ ho_{ m BCP}$	⊿вср	$G_{ m BCP}$	$V_{\rm BCP}$	$H_{\rm BCP}$	E _{HB}
9b	100	0.0590	0.1655	0.0521	-0.0628	-0.0107	-19.69
00	130	0.0574	0.1668	0.0513	-0.0609	-0.0096	-19.12
H10	180	0.0613	0.1659	0.0535	-0.0656	-0.0121	-20.58
10b-	240	0.0631	0.1648	0.0544	-0.0676	-0.0132	-21.22
0	300	0.0663	0.1619	0.0559	-0.0713	-0.0154	-22.37
ą	100	0.0394	0.1333	0.0345	-0.0358	-0.0012	-11.22
60	130	0.0396	0.1317	0.0344	-0.0358	-0.0014	-11.23
-H1a	180	0.0370	0.1279	0.0324	-0.0328	-0.0004	-10.29
N1a-	240	0.0352	0.1241	0.0308	-0.0306	0.0002	-9.58
	300	0.0363	0.1218	0.0309	-0.0314	-0.0005	-9.85
. ⁱ C	100	0.0396	0.1436	0.0365	-0.0370	-0.0006	-11.62
08	130	0.0378	0.1423	0.0353	-0.0350	0.0003	-10.99
H2a [.]	180	0.0367	0.1400	0.0344	-0.0337	0.0007	-10.57
N2a-	240	0.0372	0.1403	0.0347	-0.0343	-0.0004	-10.75
1	300	0.0344	0.1362	0.0325	-0.0310	0.0015	-9.74

Table S9. SalImi QTAiM parameters (in atomic unit) as a function of pressure corresponding to the H···O bond critical point (BCPs), the electron density at BCP ρ_{BCP} ; Laplacian of electron density at BCP, $\Delta^2 \rho_{BCP}$; total electron energy density at BCP, H_{BCP} and the components of the H_{BCP} : kinetic electron energy density, G_{BCP} ; potential electron energy density, V_{BCP} , the hydrogen bond energy, E_{HB} .

	p (GPa)	$ ho_{ m BCP}$	⊿вср	$G_{\rm BCP}$	$V_{\rm BCP}$	$H_{\rm BCP}$	$E_{\rm HB}$
9b	0.16	0.0354	0.1457	0.0353	-0.0341	0.0012	-10.71
0	0.95	0.0357	0.1456	0.0354	-0.0344	0.0009	-10.79
H10b	1.30	0.0347	0.1430	0.0345	-0.0332	0.0013	-10.41
10b-	1.67	0.0315	0.1308	0.0308	-0.0289	0.0019	-9.07
0	2.27	0.0315	0.1353	0.0316	-0.0294	0.0022	-9.22
4	0.16	0.0305	0.1152	0.0271	-0.0254	0.0017	-7.96
60…	0.95	0.0327	0.1251	0.0297	-0.0282	0.0015	-8.85
.Hla	1.30	0.0326	0.1243	0.0295	-0.0279	0.0015	-8.78
Nla-	1.67	0.0325	0.1288	0.0303	-0.0284	0.0019	-8.91
	2.27	0.0370	0.1401	0.0344	-0.0337	0.0006	-10.58
i	0.16	0.0315	0.1354	0.0309	-0.0281	0.0029	-8.82
-08	0.95	0.0307	0.1291	0.0295	-0.0267	0.0028	-8.36
V2a-H2a···	1.30	0.0322	0.1359	0.0313	-0.0287	0.0027	-9.00
	1.67	0.0322	0.1317	0.0306	-0.0283	0.0023	-8.87
2	2.27	0.0359	0.1516	0.0359	-0.0339	0.0020	-10.64

Table S10. Parameters of the helicoid: a_h (semi-major axis), b_h (semi-minor axis), Sh_h (helix pitch), c_h (focal length of the ellipse), e_h (eccentricity of the ellipse), l_h (circumference of the ellipse), and S_h (area of the ellipse).

		$2a_h$ (Å)	a_h (Å)	$2b_{h}(\text{\AA})$	b_{h} (Å)	$Sh_{\rm h}({ m \AA})$	$c_{\rm h}({ m \AA})$	\mathcal{e}_{h}	$S_{\rm h}$ (Å ²)	$l_{\rm h}({ m \AA})$
	300	6.73	3.37	3.09	1.55	11.07	2.99	0.89	16.36	15.96
(240	6.73	3.37	3.05	1.52	11.09	3.00	0.89	16.11	15.91
T (K	180	6.74	3.37	3.02	1.51	11.12	3.01	0.89	15.99	15.89
	130	6.75	3.37	2.99	1.50	11.13	3.02	0.90	15.85	15.87
	100	6.76	3.38	2.98	1.49	11.06	3.03	0.90	15.85	15.88
	0.16	6.65	3.33	3.03	1.51	11.28	2.96	0.89	15.82	15.74
a)	0.95	6.57	3.28	2.88	1.44	11.53	2.95	0.90	14.85	15.40
(GP	1.3	6.57	3.28	2.83	1.42	11.58	2.96	0.90	14.60	15.35
d	1.67	6.57	3.29	2.77	1.39	11.65	2.98	0.91	14.29	15.28
	2.27	6.53	3.27	2.72	1.36	11.67	2.97	0.91	13.96	15.15

Table S11.	The assignment	t of the selected	vibrational	bands observed i	n FT-IR and	Raman spectra of SalImi
	0					1

v FT-IR (cm ⁻¹)	v Raman (cm ⁻¹)	Assignment	Literature	v calc.* (cm ⁻¹)
3159	3165	v(N–H)	[1]	3180
3151	3152	v(N–H)	[1]	3168
1626	1630	v(C=C)	[1]	1644
1572	1567	v _{asym} (COO)	[1,6]	1601
	1524	v(C–N)	[1]	1509
1486	1480	v(C-COO)	[1,6]	1559
1462	1454	ring mode + δ (CNH)	[1]	1460
1388		v _{sym} (COO)	[1]	1354
1346		ν(С-ОН)	[1]	1323
905	912	γ(CCH)	[1]	908
890	896	δ(NCN)	[1]	892
859	855	γ(CNH)	[1]	862
808	807	δ(CCN)	[1]	780
757	759	δ(CCH)	[1]	751

^{*}calculated normal modes of imidazolium and acid ions using ωB97XD/6-311++G(d,p) method; scaling factor of 0.97 was used.

Table S12. The assignment of the selected bands observed in Raman spectra in the phonon spectral range of SalImi.

v Raman (cm ⁻¹)	Assignment	Literature
136	$\nu(N^+-H^{\dots}O^-)$	[2-5]
99	$\nu(N^+-H^{\dots}O^-)$	[2-5]
53	$\gamma(N^+-H^{\dots}O^-)$	[2-5]
40	$\gamma(N^+-H^-O^-)$	[2-5]

References

- Zięba, S.; Dubis, A. T.; Gzella, A. K.; Ławniczak, P.; Pogorzelec-Glaser, K.; Łapiński, A. Toward a new type of proton conductor based on imidazole and aromatic acids. *Phys. Chem. Chem. Phys.* 2019, 21, 17152-17162.
- (2) Lippert, E. Hydrogen Bond (Eds.: M. D. Joesten, L. J. Schaad, M. Dekker) New York, 1974.
- (3) Calderwood, J. H. The Hydrogen Bond. Phys. Bull. 1977, 28, 130.
- (4) D. Hadži, *Theoretical Treatment of Hydrogen Bonding*, Wiley, 1997.
- (5) Widelicka, M.; Pogorzelec-Glaser, K.; Pankiewicz, R.; Łapiński, A. Spectroscopic investigations of the new anhydrous proton-conducting compound of pyrazole with oxalate acid. *J. Raman Spectrosc.* 2019, 50, 1914–1925.
- (6) Chinnakannu, E.; Sankar, M.; Chandran, S.: Thamotharan, K.; Manickam, S. Crystal growth, structural, optical, thermal, DFT and Z-scan analyses of Imidazolium 3,4-dinitrobenzoate crystal, *Journal of Molecular Structure*, **2023**, *1294*, 136419.

Table S13.	Lengths	and angles	s of the bonds	in the	imidazole ion	as a function	of the	temperature.	Note:	The atomic	labeling sc	heme i	S
shown in Fig	gure S2.												

	100 K	130 K ^[1]	180 K	240 K	300 K
Bond Lengths (Å)					
N1a-C1a	1.324	1.323	1.316	1.311	1.306
N2a-C1a	1.329	1.327	1.324	1.319	1.319
N1a-C3a	1.371	1.366	1.358	1.349	1.342
N2a-C2a	1.367	1.361	1.353	1.344	1.342
C2a-C3a	1.347	1.340	1.329	1.317	1.308
Angles (°)					
N1a-C1a-N2a	108.5	108.4	108.3	108.3	108.2
C1a-N1a-C3a	108.6	108.6	108.6	108.5	108.5
C1a-N2a-C2a	108.6	108.5	108.3	108.0	107.8
N1a-C3a-C2a	107.0	107.1	107.1	107.1	107.4
N2a-C2a-C3a	107.2	107.4	107.6	108.0	108.1

Table S14. Lengths and angles of the bonds in the imidazole ion as a function of the pressure. Note: The atomic labeling scheme is shown in Figure S2.

	0.16 GPa	0.95 GPa	1.3 GPa	1.67 GPa	2.27 GPa			
Bond Lengths (Å)								
Nla-Cla	1.392	1.327	1.296	1.299	1.299			
N2a-C1a	1.341	1.289	1.297	1.287	1.299			
N1a-C3a	1.398	1.361	1.383	1.416	1.298			
N2aC2a	1.277	1.258	1.317	1.342	1.296			
C2a-C3a	1.402	1.364	1.348	1.352	1.298			
Angles (°)								
N1a-C1a-N2a	100.2	105.9	108.5	108.3	107.9			
C1a-N1a-C3a	115.6	109.6	110.7	111.8	107.9			
C1a-N2a-C2a	113.1	112.2	108.1	108.2	108.1			
N1a-C3a-C2a	97.5	103.0	101.7	99.7	108.1			
N2a-C2a-C3a	113.1	109.2	111.0	111.9	107.9			