-- Electronic Supplementary Information --

Molecular Mechanism behind Cholinium-Taurate Ionic Liquid in Stabilisation of HDAC2 for Alcohol Use Disorders: Insights from DFT and MD Simulations

S. M. Esther Rubavathy,[†] Gopal Hema[†] and M. Prakash^{†,*}

^{*†*} Computational Chemistry Research Laboratory (CCRL), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603 203, Chengalpattu, Tamil Nadu, India.

Table of Contents

Figures

Fig. S1 Hoffmeister series of anions and cations for protein stabilisation and destabilisation.Fig. S2 Optimized geometries of the IL-water clusters with bond distances in Å.

Fig. S3 NCI plots of $[Cho]^+[Tau]^--W_n$ clusters (n = 1-5), with the blue and green shaded areas denoting, respectively, strong and weak interactions.

Fig. S4 AIM analysis topography of hydrated ILS clusters with isomers.

Fig. S5 RDG plots of hydrated ILS clusters with isomers.

Fig. S6 ESP plots of different mole fractions of ILs.

Fig. S7 FMO plots of different mole fractions of ILs.

Fig. S8 DOS plots of different mole fractions of ILs.

Fig. S9 RMSD plots of different mole fractions of ILs.

Fig. S10 RMSF plots of different mole fractions of ILs.

Fig. S11 Rg plots of different mole fractions of ILs.

Fig. S12 PCA plots of different mole fractions of ILs.

Fig. S13 DCCM plots of apo-protein with different mole fractions of ILs

Fig. S14 Contact map plots of apo-protein with different mole fractions of ILs

Fig. S15 The accumulation of water and [Cho]⁺[Tau]⁻ of ILs on HDAC2's first solvation shell

Fig. S16 Ramachandran plots of apo-protein with different mole fractions of ILs (a) Proteinwater

Fig. S17 The H-bonding interaction of different mole fractions of ILs.

Fig. S18 The RDFs of oxygen (O1, O2 & O3) atoms [Tau]⁻ ions, with the COM of water molecules at 0.80 and 1.00-mole fractions of ILs.

Fig. S19 Secondary Structure analysis confirms that the turn in the protein without ILs transformed into a helix.

Fig. S20 Secondary Structure analysis confirms that the helix in the protein without ILs transformed into a turn.

Fig. S21 Secondary Structure analysis confirms that the turn in the protein without ILs transformed into a helix.

Fig. S22 Secondary Structure analysis confirms that the turn in the protein without ILs transformed into a helix.

Fig. S23. The average plots of different mole fractions of ILs with ethanol

<u>Tables</u>

Table S1. The binding energy of the ILs -Water systems with dispersion correction by DFT studies.

Table S2. The values of the computed total electron density $(\rho(r_c))$ and the total Laplacian electron density $(\nabla 2\rho(r_c))$ for each complex.

Table S3. Chemical reactivity of the [Cho]⁺[Tau]⁻ IL systems.

Table S4. The average values of RMSD, RMSF, and Rg of apoprotein with water and different mole fractions of ILs.

Table S5. The quantity of water molecules and [Cho]⁺[Tau]⁻ ILs that accumulated on HDAC2's first solvation shell.

Table S6. The average value of the number of H-bonds between HDAC2 and different mole fractions of [Cho]⁺[Tau]⁻ IL.

Table S7. The average number of H-bonds between water and different mole fractions of [Cho]⁺[Tau]⁻ ILs.

Table S8. The average number of H-bonds between HDAC2 and water.

Table S9. The first and second peak values of RDF graphs.

Table S10. The ternary mixture of ethanol and [Cho]⁺[Tau]⁻ ILs in water containing HDAC2.

Table S11. The average values of RMSD, RMSF, and Rg of apoprotein with water, different mole fraction of ILs and ethanol.

Table S12. The dihedral angles phi and psi values for different mole fractions of IL

Fig. S1 Hoffmeister series of anions and cations for protein stabilisation and destabilisation.

Fig. S2 Optimized geometries of the IL-water clusters with bond distances in Å.

Fig. S3 NCI plots of $[Cho]^+[Tau]^--W_n$ clusters (n = 1-5), with the blue and green shaded areas denoting, respectively, strong and weak interactions.

Fig. S4 AIM analysis topography of hydrated ILS clusters with isomers.

Fig. S5 RDG plots of hydrated ILS clusters with isomers.

Fig. S6 MESP contour plots for a) IL-without water b)[Cho][Tau] IL- W_{1a} c) [Cho][Tau] IL- W_{1b} d) [Cho][Tau] IL- W_{2a} e) [Cho][Tau] IL- W_{2b} f) [Cho][Tau] IL- W_{3a} g) [Cho][Tau] IL- W_{3b} h) [Cho][Tau] IL- W_{4a} i) [Cho][Tau] IL- W_{4b} j)[Cho][Tau] IL- W_{5a} k) [Cho][Tau] IL- W_{5b}

Fig. S7 FMOs including energies of HOMO and LUMO of a)[Cho][Tau] IL- W1b b) [Cho][Tau] IL- W2b c) [Cho][Tau] IL- W3b d) [Cho][Tau] IL- W4b e) [Cho][Tau] IL- W5b

Fig. S8 DOS plots for a) IL-without water b)[Cho][Tau] IL- W1a c) [Cho][Tau] IL- W1b d) [Cho][Tau] IL- W2a e) [Cho][Tau] IL- W2b f) [Cho][Tau] IL- W3a g) [Cho][Tau] IL- W3b h) [Cho][Tau] IL- W4a i) [Cho][Tau] IL- W4b j)[Cho][Tau] IL- W5a k) [Cho][Tau] IL-W5b

Fig. S9 RMSD plots of different mole fractions of ILs (a) Protein-water, 0.20, 0.40 and 0.60 ILs (b) 0.80 and 1.00 ILs.

Fig. S10 RMSF plots of different mole fractions of ILs (a) Protein-water, 0.20 and 0.40 ILs (b) 0.60, 0.80 and 1.00 ILs.

Fig. S11 Rg plots of different mole fractions of ILs (a) Protein-water, 0.20 and 0.40 ILs (b) 0.60, 0.80 and 1.00 ILs.

Fig. S12 PCA plots of apo-protein with different mole fractions of ILs (a) Protein-water, (b) 0.20, (c) 0.40, (d) 0.60, (e) 0.80, and (f) 1.00.

Fig. S13 DCCM plots of apo-protein with different mole fractions of ILs (a) Protein-water, (b) 0.20, (c) 0.40, (d) 0.60, (e) 0.80, and (f) 1.00.

Fig. S14 Contact map plots of apo-protein with different mole fractions of ILs (a) Proteinwater, (b) 0.20, (c) 0.40, (d) 0.60, (e) 0.80, and (f) 1.00.

Fig. S15 The accumulation of water and [Cho]⁺[Tau]⁻ of ILs on HDAC2's first solvation shell at (a) 0.20, (b) 0.40, (c) 0.60, (d) 0.80, and (e) 1.00 mole fractions.

Fig. S16 Ramachandran plots of apo-protein with different mole fractions of ILs (a) Proteinwater, (b) 0.20, (c) 0.40, (d) 0.60, (e) 0.80, and (f) 1.00.

Fig. S17 The H-bonding interaction of different mole fractions of ILs a) Protein with ILs b) protein with water

Fig. S18 The RDFs of oxygen (O1, O2 & O3) atoms [Tau]⁻ ions, with the COM of water molecules at 0.80 and 1.00-mole fractions of ILs.

Fig. S19 Secondary Structure analysis confirms that the turn in the protein without ILs transformed into a helix.

Fig. S20 Secondary Structure analysis confirms that the helix in the protein without ILs transformed into a turn.

Fig. S21 Secondary Structure analysis confirms that the turn in the protein without ILs transformed into a helix.

Fig. S22 Secondary Structure analysis confirms that the turn in the protein without ILs transformed into a helix.

At lower mole fractions of ethanol (up to 0.40), the system maintains balanced interactions, resulting in lower RMSD values. H-bonding between ethanol and IL components stabilizes the structure. Ethanol forms H-bonds with both the [Cho]⁺ and the [Tau]⁻, acting as a mediator between them. The components are well-solvated, maintaining a stable configuration, resulting in low RMSD values. Over 0.60-mole fraction of ethanol can destabilize H-bonding capacity by weakening IL interaction networks. Elevated mole fractions could result in a structural reorganization, which would create ethanol–water clusters and lessen the interaction with IL ions. Molecular overcrowding effects restrict molecular mobility, leading to conformational changes and increased RMSD values.

Fig. S23 The average plots of different mole fractions of ILs with ethanol (a) RMSD plot, (b) RMSF plot, and (c) Rg plot.

		[Cho][Tau] IL							
W _{n=0-5}	N _{HB}	M06-2X (kcal/mol)	M06-2X +D3 (kcal/mol)						
n = 0	2	-95.98	-96.57						
W _{1a}	3	-117.55	-118.18						
W _{1b}	3	-113.55	-114.48						
W _{2a}	5	-128.25	-129.46						
W _{2b}	4	-125.01	-126.18						
W _{3a}	6	-141.41	-142.96						
W _{3b}	5	-138.13	-139.67						
W _{4a}	8	-152.59	-154.52						
W _{4b}	7	-151.55	-153.59						
W _{5a}	10	-167.67	-169.92						
W _{5b}	9	-165.46	-167.71						

Table S1. The binding energy of the ILs -Water systems with dispersion correction by DFT studies.

	[Cho	o][Tau]
W _{n=0-5}	$(\rho(\mathbf{r}_{c}))$	$(\nabla^2 \rho (r_c))$
	(a.u)	(a.u)
n = 0	0.0832	0.0716
W _{1a}	0.1414	0.1288
W _{1b}	0.1238	0.1132
W _{2a}	0.2073	0.1861
W _{2b}	0.1521	0.1415
W _{3a}	0.2216	0.2148
W _{3b}	0.218	0.1977
W _{4a}	0.2671	0.2457
W _{4b}	0.2361	0.2162
W _{5a}	0.3295	0.2996
W _{5b}	0.2493	0.2278

Table S2. The values of the computed total electron density $(\rho(r_c))$ and the total Laplacian electron density $(\nabla 2\rho(r_c))$ for each complex.

 Table S3. The chemical reactivity descriptors for the IL -Water systems.

	[Cho][Tau] IL										
W _{n=0-5}	HOMO (eV)	LUMO (eV)	Energ y Gap (eV)	Ionizatio n Potential (IP) (eV)	Electro n Affinity (EA) (eV)	Chemica l Potential (µ) (eV)	Hardnes s (η) (eV)	Softness (S) (eV)	Electrop hilicity (ω) (eV)	Electrone gativity (\chi) (eV)	Fermi Level (E _f) (eV)
n = 0	-7.7941	-0.7934	7.0007	7.7941	0.7934	-4.2937	3.5003	1.75017	32.2667	4.29375	-4.2937
W _{1a}	-8.0330	-0.5613	7.4717	8.0330	0.5613	-4.2971	3.7358	1.86792	34.4921	4.29715	-4.2971
W _{1b}	-8.0390	-0.5464	7.4926	8.0390	0.5464	-4.2927	3.7463	1.87315	34.5170	4.2927	-4.2927
W _{2a}	-8.1674	-0.5646	7.6028	8.1674	0.5646	-4.3660	3.8014	1.9007	36.2310	4.366	-4.366
W _{2b}	-8.1655	-0.6590	7.5065	8.1655	0.6590	-4.4122	3.7532	1.8766	36.5340	4.41225	-4.4122
W _{3a}	-8.3640	-0.5594	7.8046	8.3640	0.5594	-4.4617	3.9023	1.9511	38.8410	4.4617	-4.4617
W _{3b}	-8.3402	-0.4764	7.8638	8.3402	0.4764	-4.4083	3.9319	1.9659	38.2045	4.4083	-4.4083
W _{4a}	-8.3530	-0.4310	7.9220	8.3530	0.4310	-4.3920	3.961	1.9805	38.2031	4.392	-4.392
W _{4b}	-8.5163	-0.4166	8.0997	8.5163	0.4166	-4.4664	4.0498	2.0249	40.3955	4.46645	-4.4664
W _{5a}	-8.3792	-0.3572	8.0223	8.3792	0.3572	-4.3682	4.011	2.0055	38.2672	4.3682	-4.3682
W _{5b}	-8.5987	-0.4478	8.1509	8.5987	0.4478	-4.52325	4.0754	2.0377	41.6914	4.52325	-4.52325

S.	Mole	RMSD (Å)				RMSF (Å)			Rg (Å)				
No	Fraction												
	of ILs	Run	Run	Run	Average	Run	Run	Run	Average	Run	Run	Run	Average
		1	2	3		1	2	3		1	2	3	
1.	Protein-	1.47	1.45	1.46	1.46	0.81	0.80	0.82	0.81	20.25	20.24	20.27	20.25
	water												
2.	0.20	1.63	1.10	1.54	1.42	0.80	0.87	0.67	0.78	20.22	20.21	20.23	20.22
3.	0.40	1.33	1.24	1.39	1.32	0.79	0.74	0.70	0.74	20.23	20.25	20.24	20.24
4.	0.60	1.32	1.03	1.23	1.19	0.74	0.73	0.63	0.70	20.21	20.22	20.23	20.22
5.	0.80	1.18	1.56	1.29	1.34	0.68	0.65	0.78	0.71	20.22	20.20	20.21	20.21
6.	1.00	1.19	1.18	1.16	1.17	0.66	0.69	0.68	0.67	20.14	20.12	20.13	20.13

Table S4. The average values of RMSD, RMSF, and Rg of apoprotein with water and different mole fractions of ILs.

Table S5. The quantity of water molecules and [Cho]⁺[Tau]⁻ ILs that accumulated on HDAC2's first solvation shell.

S. No	Mole Fraction of ILs	Accumulation on the HDAC2 Surface			R[Cho]+	R[Tau] ⁻
		[Cho] ⁺	[Tau] ⁻	Water		
1.	0.20	21	25	3645	0.863	0.789
2.	0.40	40	45	3069	1.022	1.112
3.	0.60	51	55	2949	0.747	0.810
4.	0.80	68	71	2778	0.730	0.701
5.	1.00	82	99	2111	0.938	0.792

S. No.	Mole fractions of ILs	Number of H-bonds						
		HDAC2-	HDAC2-	HDAC2-[Cho] ⁺				
		[Cho] ⁺	[Tau] ⁻	[Tau] ⁻				
1.	0.20	19.20	32.52	41.64				
2.	0.40	20.40	48.94	64.95				
3.	0.60	21.90	59.70	80.73				
4.	0.80	24.90	69.93	94.85				
5.	1.00	29.32	81.54	110.48				

Table S6. The average value of the H-bonds between HDAC2 and different mole fractions of [Cho]⁺[Tau]⁻ ILs.

Table S7. The average number of H-bonds between water and different mole fractions of[Cho]+[Tau]- ILs.

S. No.	Mole fractions	Number of H-bonds					
	of ILs	Wat-[Cho] ⁺	Wat-[Tau] ⁻	Wat-[Cho] ⁺ [Tau] ⁻			
1.	0.20	402.79	764.35	1025.82			
2.	0.40	497.65	1476.58	1974.47			
3.	0.60	705.75	2129.85	2835.65			
4.	0.80	885.50	2712.95	3598.46			
5.	1.00	1024.50	3212.45	4236.58			

Table S8. The average number of H-bonds between HDAC2 and water.

S. No.	Mole fractions of ILs	Number of H-bonds between HDAC2-Wat
1.	0	920.43
2.	0.20	862.54
3.	0.40	810.42
4.	0.60	775.54
5.	0.80	735.67
6.	1.00	691.43

Ions		c P	afaranca				Distance (Å)			g(r)			
Systems	Systems				Selection	F	irst	Se	cond	F	irst	Se	cond
			01			1	.80		3.10	1	.15	().98
0.60	Tau	ı -	02			1	.80		3.11	2	.07]	.06
		03			2	.90	4	4.30	1	.62]	.10	
			01			1	.82		3.10	2	.17]	.08
0.80	Tau	ı -	02		Water	1	.82		3.20	1	.20]	.10
			03		(COM)	2	.91	4	4.30	1	.67]	.12
			01				1.8	30	3.92	2	1.9	7	1.03
1.0)	Tau	02				1.8	30	3.10)	1.1	0	1.30
			03				2.9	0	4.30)	1.5	6	1.08

Table S9. The first and second peak values of RDF graphs.

Table S10. The ternary mixture of ethanol and [Cho]⁺[Tau]⁻ ILs in water containing HDAC2.

System	Mole fraction	Ethanol	Choline	Taurate	Water
1	Pro-water	0	0	0	16366
2	Pro-ILs	0	150	150	14467
3	0.10	30	135	135	14539
4	0.20	60	120	120	14644
5	0.40	120	90	90	14790
6	0.60	180	60	60	14942

7	0.80	240	30	30	15112
8	1.00	300	0	0	15285

Table S11. The average values of RMSD, RMSF, and Rg of apoprotein with water, different mole fraction of ILs and ethanol.

System	Mole fraction	RMSD (Å)	RMSF (Å)	Rg (Å)
1	Pro-water	1.29	0.69	16.5
2	Pro-ILs	1.27	0.64	16.4
3	0.10	1.12	0.63	16.2
4	0.20	1.18	0.65	16.3
5	0.40	1.19	0.71	16.6
6	0.60	1.29	0.74	16.8
7	0.80	1.50	0.77	16.9
8	1.00	1.67	0.78	17.2

Table S12. The dihedral angles phi and psi values for different mole fractions of IL.

Mole	Residues	Conformational	¢ (Phi)		ψ (Psi)		Deviations	
Fractions		changes	Without	With IL	Without	With	¢ (Phi)	ψ (Psi)
			IL		IL	IL		
0.20	K294	Turn to Helix	-65.9°	-73.2°	-17.9°	-40.0°	-7.3°	-22.1°
	T295	Turn to Helix	-73.2°	-72.3°	-40.0°	-67.0°	-0.9°	-27.0°
0.40	A287	Helix to Turn	-83.7°	-79.4°	-9.0°	-13.1°	-4.3°	-4.1°
	K294	Turn to Helix	-65.9°	-73.7°	-17.9°	-20.7°	-7.8°	-2.8°
	T295	Turn to Helix	-73.2°	-69.7°	-40.0°	-25.5°	-3.5°	-14.5°
0.60	G243	Turn to Helix	-70.6°	-52.6°	-4.9°	-29.9°	-18.0°	-25°
	Q244	Turn to Helix	-73.7°	-73.3°	-28.6°	-45.4°	-0.4°	-16.8°
	I245	Turn to Helix	-125.8°	-115.3°	-23.2°	-22.6°	-10.5°	-0.6°
0.80	G243	Turn to Helix	-70.6°	-52.6°	-4.9°	-27.9°	-18.0°	-9.9°
	Q244	Turn to Helix	-73.7°	-71.3°	-28.6°	-45.4°	-2.4°	-16.8°
	I245	Turn to Helix	-125.8°	-115.3°	-23.2°	-22.6°	-10.5°	-0.6°
1.00	G243	Turn to Helix	-70.6°	-53.6°	-4.9°	-28.9°	-17.0°	-24.0°
	Q244	Turn to Helix	-73.7°	-72.3°	-28.6°	-44.4°	-1.4°	-15.8°

	I245	Turn to Helix	-125.8°	-114.3°	-23.2°	-21.6°	-11.5°	-1.6°
--	------	---------------	---------	---------	--------	--------	--------	-------