Supplementary Information for: The Role of the Metal in Metal/MoS₂ and Metal/Ca₂N/MoS₂ Interfaces

Adrian F. Rumson,¹ Mohammad Rafiee Diznab,² Jesse Maassen,² and Erin R. Johnson^{1,2}

¹⁾Department of Chemistry, Dalhousie University

²⁾Department of Physics & Atmospheric Science, Dalhousie University

6 January 2025

Table S1: Computed properties of metal/MoS₂ heterostructures. N_{atoms} is the total number of atoms in the unit cell, while n_{MoS_2} is the number of MoS₂ formula units. Other quantities are defined in the main text of the article.

Interface	$N_{\rm atoms}$	$n_{\rm MoS_2}$	$\varepsilon_{\mathrm{metal}}$	$\Delta \bar{z}_{\rm S-metal}$	ςMo	$Q_{\rm MoS_2}$	TBH	TBW	IGS
			(%)	(Å)	(Å)	(e^-/MoS_2)	(eV)	(Å)	$(10^{14} \text{ e}^{-}/\text{cm}^{2})$
$Sb(0001)/MoS_2$	81	13	-0.86	$3.08 {\pm} 0.04$	0.00	0.04	3.00	1.41	0.45
$Sb(01\overline{1}2)/MoS_2$	59	8	+0.68	$3.07 {\pm} 0.08$	0.00	0.06	3.02	1.33	1.43
$\mathrm{Bi}(0001)/\mathrm{MoS}_2$	111	19	+2.17	$3.11 {\pm} 0.03$	0.03	0.02	2.80	1.30	0.82
$\operatorname{Bi}(01\overline{1}2)/\operatorname{MoS}_2$	43	6	-0.99	$3.05{\pm}0.06$	0.00	0.08	2.64	1.17	1.28
Au/MoS_2	135	13	-2.10	$2.70 {\pm} 0.05$	0.00	0.02	1.88	0.97	1.76
Ag/MoS_2	162	16	-0.09	$2.54{\pm}0.01$	0.00	0.08	1.77	0.77	2.21
Cu/MoS_2	150	12	-0.26	$2.26 {\pm} 0.06$	0.01	0.12	0.72	0.42	2.70
Pt/MoS_2	33	3	-1.11	$2.33 {\pm} 0.04$	0.00	0.01	1.13	0.48	5.48
Ru/MoS_2	105	3	+0.76	$2.22 {\pm} 0.01$	0.01	0.14	-0.04	-	4.33
Y/MoS_2	30	4	+1.66	$2.24{\pm}0.14$	0.18	0.44	-1.21	-	6.19
W/MoS_2	73	8	+1.87	$1.94{\pm}0.23$	0.04	0.34	-3.22	-	6.70
Mo/MoS_2	130	13	+2.73	$1.70 {\pm} 0.26$	0.03	0.30	-3.79	-	5.92

Table S2: Computed properties of minimally strained metal/Ca₂N/MoS₂ heterostructures.

Interface	$N_{\rm atoms}$	n_{MoS_2}	$n_{\rm Ca_2N}$	$\varepsilon_{\mathrm{metal}}$	$\varepsilon_{\rm Ca_2N}$	$E_{\rm metal}^{\rm strain}$	$E_{\rm Ca_2N}^{\rm strain}$	$E_{\text{exfol}}^{\text{unstr}}$	ςMo	$E_{\rm Gap}^{\rm MoS_2}$	$Q_{\rm MoS_2}$
				(%)	(%)	$(\text{meV}/\text{\AA}^2)$	$(\text{meV}/\text{\AA}^2)$	$(\text{meV}/\text{\AA}^2)$	(Å)	(eV)	(e^{-}/MoS_2)
$Au/Ca_2N/MoS_2$	198	13	10	-2.10	+5.52	9.6	12.6	211.6	0.12	1.0	0.24
$Ag/Ca_2N/MoS_2$	201	16	14	-0.09	+2.35	0.0	2.7	223.1	0.15	0.7	0.30
$Cu/Ca_2N/MoS_2$	234	12	10	-0.26	+1.67	0.2	1.4	249.7	0.13	0.9	0.27
$Ru/Ca_2N/MoS_2$	159	12	10	+0.76	+1.67	3.8	1.4	263.6	0.12	0.9	0.25
$W/Ca_2N/MoS_2$	182	16	13	+1.87	+1.67	10.8	1.4	215.8	0.13	0.8	0.25
${\rm Mo}/{\rm Ca_2N}/{\rm MoS_2}$	301	25	19	+0.98	-1.01	3.2	0.5	220.9	0.14	0.7	0.29

	MoS	$_2/\mathrm{Ca}_2\mathrm{N}$	1	Ca ₂ N/metal			
Interface	$\Delta \bar{z}$	TBH	TBW	$\Delta \bar{z}$	TBH	TBW	
	(Å)	(eV)	(Å)	(Å)	(eV)	(Å)	
Au/Ca ₂ N/MoS ₂	$2.48 {\pm} 0.11$	0.47	0.44	$2.61 {\pm} 0.14$	1.28	0.68	
$Ag/Ca_2N/MoS_2$	$2.44{\pm}0.10$	-0.05	-	$2.68 {\pm} 0.07$	1.09	0.67	
$Cu/Ca_2N/MoS_2$	$2.50 {\pm} 0.11$	0.40	0.40	$2.62 {\pm} 0.05$	1.42	0.75	
$Ru/Ca_2N/MoS_2$	$2.50 {\pm} 0.11$	0.41	0.42	$2.71 {\pm} 0.03$	1.60	0.78	
$W/Ca_2N/MoS_2$	$2.46 {\pm} 0.11$	0.28	0.32	$2.69 {\pm} 0.06$	0.83	0.59	
$Mo/Ca_2N/MoS_2$	$2.47 {\pm} 0.11$	0.16	0.25	2.42 ± 0.10	0.31	0.35	

Figure S1: Convergence of the electronic energy with respect to the vacuum spacing for the Pt/MoS_2 heterostructure.

Interface	$E_{\text{exfol}}^{\text{str}}$	$E_{\text{exfol}}^{\text{str,PBE}}$	$E_{\mathrm{exfol}}^{\mathrm{str},\mathrm{XDM}}$	$E_{\rm metal}^{\rm strain}$	$E_{\rm exfol}^{\rm unstr}$
$Sb(0001)/MoS_2$	20.2	-0.3	20.4	0.9	19.3
$Sb(01\overline{1}2)/MoS_2$	28.1	-1.7	29.8	1.0	27.1
$Bi(0001)/MoS_2$	20.7	-2.8	23.5	2.2	18.6
$Bi(01\overline{1}2)/MoS_2$	28.5	-0.6	29.1	1.9	26.6
Au/MoS_2	33.9	-3.8	37.7	9.6	24.3
Ag/MoS_2	45.3	8.4	36.9	0.0	27.1
Cu/MoS_2	68.0	12.7	55.3	0.2	67.8
Pt/MoS_2	59.1	8.0	51.1	4.9	54.2
Ru/MoS_2	104.9	43.6	61.4	3.8	101.2
Y/MoS_2	101.0	66.0	35.1	3.1	98.0
W/MoS_2	122.2	74.7	47.6	10.8	111.4
Mo/MoS_2	89.2	22.5	66.7	24.2	65.0

Table S3: Decomposed exfoliation energies of metal/MoS₂ heterostructures in $meV/Å^2$.

Table S4: Computed properties of selected Ca_2N/MoS_2 heterostructures. n refers to the number of formula units of each component.

Property	Geom A	Geom B	Geom C	Geom D	Geom E
$MoS_2 n$	9	4	16	19	13
MoS_2 strain (%)	0.00	0.00	0.00	0.00	0.00
$MoS_2 \varsigma_{Mo}$ (Å)	0.04	0.19	0.13	0.14	0.15
$MoS_2 E_{gap}$ (eV)	1.3	0.5	0.9	0.7	0.6
$Ca_2N n$	7	3	13	16	9
Ca_2N strain (%)	0.14	1.67	2.35	4.20	5.23
$Ca_2N E_{strain} (meV/Å^2)$	0.0	1.4	2.7	8.3	12.6
$Q_{\rm MoS_2}~(e^-)$	0.35	0.35	0.36	0.36	0.34
$E_{\text{exfol}}^{\text{str}} (\text{meV}/\text{\AA}^2)$	86.0	86.9	89.2	88.1	76.3
$E_{\rm exfol}^{\rm unstr} ({\rm meV/\AA^2})$	86.0	85.2	86.5	79.8	63.7

Table S5: Computed properties of $metal/Ca_2N/MoS_2$ heterostructures with the Ca_2N/MoS_2 bilayers constrained to either Geometry A or Geometry B.

Metal	Geometry	$N_{\rm atoms}$	$\varepsilon_{\mathrm{metal}}$ (%)	ς_{Mo} (Å)	$E_{Gap}^{MoS_2}$ (eV)
Au	А	120	4.14	0.04	1.4
Ag	Α	120	6.05	0.04	1.4
Cu	А	126	4.69	0.04	1.4
Ru	А	126	3.29	0.04	1.5
W	А	120	5.90	0.03	1.4
Mo	А	100	6.67	0.03	1.5
Au	В	45	9.81	0.15	0.8
Ag	В	45	8.16	0.14	0.6
Cu	В	63	4.91	0.15	0.9
Ru	В	63	13.69	0.12	0.9
W	В	96	6.63	0.14	0.8
Mo	В	60	21.24	0.12	0.9

Figure S2: Optimized geometries of metal/ MoS_2 interfaces.

Figure S3: MoS₂ projected DOS for metal/MoS₂ interfaces.

Figure S4: Averaged potential plots for metal/MoS₂ interfaces. The error bars indicate the maximum and minimum potential in the plane of the interface. For W and Mo, the arrow-error bars point to minimum potentials of -57.8 eV and -72.2 eV respectively.

Figure S5: Kohn-Sham band structures computed using FHI-aims with PBE (top) or HSE06 (bottom) at the PBE-XDM QE-relaxed geometries. Three representative cases are shown: Bi(0001), (vdW), Ag (intermediate), and Y (covalent).

Figure S6: Optimized geometries of $metal/Ca_2N/MoS_2$ interfaces.

Figure S7: MoS₂ projected DOS for metal/Ca₂N/MoS₂ interfaces.

Figure S8: Averaged potential plots for $metal/Ca_2N/MoS_2$ interfaces. The error bars indicate the maximum and minimum potential in the plane of the interface.