Supplementary information for

Multiferroelectricity in two-dimensional Indium Pnictide

optoelectronic materials

Jingwen Jiang^a, Zhuang Ma^{*b}, Yiguo Xu^{*c}

^a School of Information Engineering, Jiangmen Polytechnic, Jiangmen, 529030,

China

^b School of Physics and Telecommunication Engineering, Zhoukou Normal University,

Zhoukou, 466001, China

^c Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China

Fig. S1 Cleavage energy for indium pnictides with different strain.

Fig. S2 (a) Phonon spectrum and **(b)** AIMD simulation for monolayer indium pnictides, which suggests that the monolayer structure is stable with non-imaginary frequency phonon dispersion and no phase change.

Fig. S3 (a) Phonon spectrum and **(b)** AIMD simulation for AFE indium pnictides, which suggest that the AFE structure is stable with non-imaginary frequency phonon dispersion and no phase change.

Fig. S4 Band structure of FE (a) and AFE (b) phases of indium pnictides from HSE06+SOC.

Fig. S5 Optical absorption coefficient of FE (a) and AFE (b) of indium pnictides, (c) heterojunction and superlattice of InAs/InSb phases. The reference air-mass 1.5-solar spectral irradiance is plotted in gray shadow.

Fig. S6 Electronic band structures with SOC for indium pnictides monolayers with FE (*Pca2*₁) symmetry.

Fig. S7 The highlighted spin-split bands around VBM region of InAs monolayer. The splitting bands along Γ -Y/X (spin degenerate/splitting) and Γ -X/Y (spin degenerate/splitting) high-symmetry lines around VBM for FE_{A/B} phases indicate the anisotropy flipping feature during the FC phase change process. The spin up and down property is inversed accompanied by the FE-1/2 phase change, in which the red and blue arrows indicate S_z (up) and -S_z (down) spin orientation in the momentum space, respectively.

Fig. S8 (a-c) Switchable spin texture projected to the k space for the upper and lower bands of monolayer indium pnictides around CBM and VBM, which is expected by reversing the in-plane ferroelectric polarization.

Fig. S9 Anisotropic in-plane NPR response for 2D FE (a) and AFE (b) indium pnictides.

Fig. S10 Electronic band structures with SOC for indium pnictides with AFE (P2/c)

symmetry.

Fig. S11 (a-c) Switchable hidden spin texture projected to the k space for the upper and lower bands of AFE indium pnictides around VBM.