SUPPORTING INFORMATION

Exploring the Potential of 2D Beryllonitrene as a Lithium-Ion Battery Anode: A Theoretical Study

Antara Vaidyanathan,¹ Harkishan Dua,² Utpal Sarkar,² Nicola Seriani,^{3*} Brahmananda

Chakraborty^{4,5*}

¹Department of Chemistry, Ramnarain Ruia Autonomous College, Mumbai 400099, India ²Materials Simulation Lab, Department of Physics, Assam University, Silchar 788011, India

³The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy

⁴High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

⁵Homi Bhabha National Institute, Mumbai 400085, India

* Corresponding author at: High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India. E-mail address: <u>brahma@barc.gov.in</u> (B. Chakraborty) and The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy. E-mail address: <u>nseriani@ictp.it</u> (N. Seriani)

Figure S1: A 2×2 supercell of pristine BeN₄ (a) geometry optimized structure plot showing the bond distances (colour legend is inset to the top-left) in the top- and side-view; the unit cell is marked in black within and; (b) analysis of the ab initio molecular dynamics (AIMD) simulations of BeN₄ after 8 picoseconds at 300 K showing the energy (left panel) and Be-N bond length (right panel) fluctuations over time, with the average, standard, and percentage average and maximum fluctuations mentioned in the table (bottom panel).

Figure S2: Electronic structure of BeN_4 and lithiated BeN_4 monolayers: Total density of states (TDOS) analysis of BeN_4 and $BeN_4 + Li$. The Fermi level is represented by a dashed line and set to 0 eV.

Figure S3: Orbital plot from the partial charge density distribution for (a) pristine BeN_4 and (b) $BeN_4 + Li$ in the (left panel) molecular *xy* plane and (right panel) plane containing adsorbed Li and N atoms.

Figure S4: Diffusion energy barrier of Li^+ across BeN_4 computed with and without solvent effect (ethylene carbonate electrolyte) calculated using the Cl-NEB method.

Figure S5: Geometry-optimized structure plots of (a–c) the three bilayer of 2D BeN₄ with (a) AA stacking, (b) AB(1) stacking, and (c) AB(2) stacking. The AB(2) bilayer was found to be the most table and Li⁺ intercalation was studied for AB(2). (d) Side view of AB(2) bilayer from the *a* direction, (e) 4 Li⁺ and (f) 12 Li⁺ intercalated in AB(2).