Electronic Supplementary Information for:

N-doped graphdiyne derivative for highly selective and

ultrasensitive NH₃ sensing at room temperature

Dong-Feng Ma,^a Hai-Qi Liu^b, Xi-Yu Zhang^b, Ya-Nan Jia,^b Xue Zhang,^b Fang Niu^{*b}, Kai-Feng Zhang^{*a}, and Yong-Qing Zhao^{*b}

^a Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, Gansu 730000, China. ^b Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.

Email addresses: yqzhao@lzu.edu.cn (Yong-Qing Zhao), niufang@lzu.edu.cn (Fang Niu), zhangkf510@sina.com (Kai-Feng Zhang)

Fig. S1 Long-term response stability of N-GDYD for 100 ppm NH₃.

Fig. S2 Top view of optimized N-GDYD structure for model molecules interact with (a) NH_3 , (c) CO, (e) NO_2 , (g) H_2 ; the side view of the optimized N-GDYD structure for the model molecule interacts with (b) NH_3 , (d) CO, (f) NO_2 , (h) H_2 . The grey, blue, white, and red ball represent for the carbon, nitrogen, hydrogen, and oxygen atom, respectively.