Supplemental Material

Structural, strength, and fracture mechanisms of superconducting transition metal nitrides TM_3N_5 (TM = W and Mo)

Haiyan Yan^{a,*}, Wenhui Zhang^{b,*}, Lei Chen^{a,c}, Yun Zhang^{a,c}, Hui Wang^b, Meiguang Zhang^{a,c,†}, Qun Wei^{d,‡}

^a College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Rare-Earth Functional

Materials and Devices Development, Baoji University of Arts and Sciences, Baoji 721013, China

^b School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China

^c College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji 721013, China

^d School of Physics, Xidian University, Xi'an 710071, China

^{*}These authors contributed equally to this work.

^{†&}lt;u>zhmgbj@126.com</u>

[‡]weiaqun@163.com

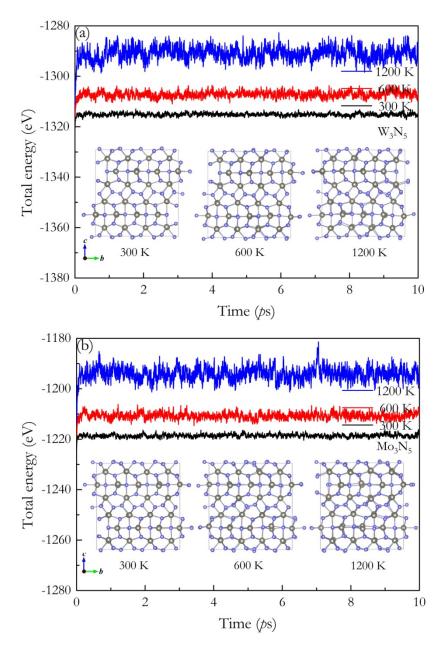


Fig. S1 AIMD simulations at 300, 600, and 1200 K for W_3N_5 (a) and Mo_3N_5 (b) at ambient conditions. Insets are the equilibrium structures after 10 *p*s.

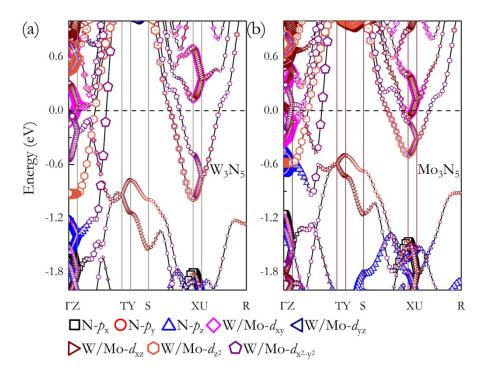


Fig. S2 Projected weights of atomic orbitals in the band structures of $W_3N_5(a)$ and Mo_3N_5 at ambient pressure. The E_F is indicated by horizontal dashed lines.

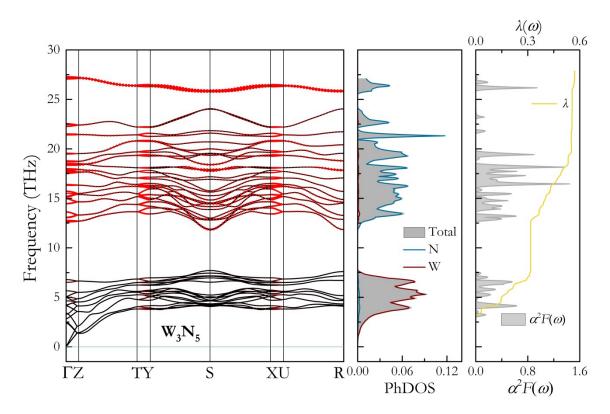


Fig. S3 Phonon dispersion curves, projected phonon density of states, Eliashberg spectral function $\alpha^2 F(\omega)$, and the EPC parameter λ for W₃N₅ at ambient pressure.