Electronic Supplementary Information (ESI) for

Host molecules inside metal-organic frameworks: host@MOF and guest@host@MOF (Matrjoschka) materials

Qiao Wu, ^a Jun Liang, ^{*a,c} Dan Wang, ^a Ruihu Wang, ^{*a,c} and Christoph Janiak ^{*b}

^a School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin,

China

^b Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204

Düsseldorf, Germany

° State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,

Chinese Academy of Sciences Fuzhou, Fujian 350002, China

* Corresponding author.

E-mail address: janiak@uni-duesseldorf.de; jliang@hebut.edu.cn; ruihu@fjirsm.ac.cn;

Material	Host molecule	Approach	Application	Ref
Porphyrin@MOF				
M@TMPyP@MOM-2 (M=Mn ²⁺ , Cu ²⁺ , Zn ²⁺ , Co ²⁺)	[H ₂ TMPyP] ⁴⁺ [p-tosyl ⁻] ₄	Bottle-around-ship Post-synthetic metalation	Cyclohexane oxidation	44
Pt@TMPyP@MOM-2	[H ₂ TMPyP] ⁴⁺ [Cl [−]] ₄	Bottle-around-ship	Sulfide ion sensing	45
M@4SP@HKUST−1(Cu, Zn) M = Fe ³⁺ , Mn ³⁺	[H ⁺] ₄ [H ₂ 4SP] ⁴⁻	Bottle-around-ship	Monooxygenation	46
M@TMPyP@MOM-n (M = Fe ²⁺ , Co ²⁺ , Mn ²⁺) (n=4, 5, 6)	[H₂TMPyP] ⁴⁺ [p-tosyl⁻]₄	Bottle-around-ship	Olefin oxidation	47
Cd@TMPyP@MOM-10(Cd)	[H₂TMPyP] ⁴⁺ [<i>p</i> -tosyl ⁻]₄	Bottle-around-ship	-	48
Mn@TMPyP@MOM-10(Mn)	[H₂TMPyP] ⁴⁺ [<i>p</i> -tosyl⁻]₄	Post–synthetic metal exchange	Epoxidation of trans-stilbene	48
Cu@TMPyP@MOM-10(CdCu)	[H₂TMPyP] ⁴⁺ [<i>p</i> -tosyl⁻] ₄	Post-synthetic metal exchange	Epoxidation of trans-stilbene	48
Cd@TMPyP@MOM-11(Cd)	[H ₂ TMPyP] ⁴⁺ [<i>p</i> -tosyl ⁻] ₄	Bottle-around-ship	CO ₂ adsorption	49
Mn@TMPyP@ZIF-8	[H ₂ TMPyP] ⁴⁺ [I [−]] ₄	Bottle-around-ship	Cyclic addition of CO_2 with epoxide	50
Zn@TMPyP@PCN-224	[H ₂ TMPyP] ⁴⁺ [I ⁻] ₄	Impregnation	Cyclic addition of CO_2 with epoxide	51
Fe@TCPP in HKUST-1(Cu)	H₂TCPP	Bottle-around-ship	Electrochemical DNA sensing	52
Phthalocyanine@MOF				
M@PcF ₁₆ @MIL-101(Cr) M= Fe ³⁺ , Ru ²⁺	H ₂ PcF ₁₆	Impregnation	Oxidation of tetralin	54
M@Pc@bio-MOF-1 (M= Co ²⁺ , Ni ²⁺ , Cu ²⁺)	H ₂ Pc	Ship-in-bottle	Styrene epoxidation	55
M@Pc@MIL-101 (M= Cu ²⁺ , Co ²⁺ , Ni ²⁺)	H ₂ Pc	Ship-in-bottle	Oxidative amidation	56
Cu@Pc@MIL-101(Cr)	H ₂ Pc	Ship-in-bottle	Styrene epoxidation	57
Cu@Pc@MIL-100(Fe)	H ₂ Pc	Ship-in-bottle	Styrene epoxidation	57
Crown ether@MOF				
18C6@ZIF-67/18C6@ZIF-8 membrane	18C6	Bottle-around-ship	Selective Li ⁺ /K ⁺ and Na ⁺ /K ⁺ transport	58
BCE@ZIF-7	BCE	Bottle-around-ship	-	59
M@BCE@ZIF-7 (M=Li ⁺ , Mg ²⁺ , Al ³⁺)	BCE	Bottle-around-ship	Selective Li*/Mg ²⁺ transport	59
DB15C5@UiO-66	DB15C5	Bottle-around-ship	Selective K ⁺ /Mg ²⁺ transport	60
DB18C6@UiO-66	DB18C6	Bottle-around-ship	Selective K ⁺ /Mg ²⁺ transport	60
B15C5@ZIF-8	B15C5	Bottle-around-ship	C_3H_6/C_3H_8 separation	61
Calixarene@MOF				
CA-1@MOF-5	CA-1	Bottle-around-ship	-	62
Pd@CA-2@MOF-5	CA-2	Bottle-around-ship	Hydrogenation of 2-butyne-1,4-diol	63

Table S1 Examples of the synthetic approaches and applications of representative host@MOF and guest@host@MOF materials.

Note: the structures of representative host molecules can be seen in Fig. 2. The reference number and content are consistent with those in the main text.

 Table S1 (continued)
 Examples of the synthetic approaches and applications of representative

 host@MOF and guest@host@MOF materials.

Material	Host molecule	Approach	Application	Ref	
Cavitand@MOF					
MeMeCH ₂ @mer-ZIF-10	MeMeCH ₂	Bottle-around-ship	-	65	
MeMeCH ₂ @rho-Zn ₁₆ Im ₃₂	MeMeCH ₂	Bottle-around-ship	-	64	
		mechanosynthesis			
Cucurbituril@MOF					
CB6@MIL-101-36	CB6	Wet-impregnation	CO ₂ sorption and	25	
(36 wt% of CB6)			CO ₂ /CH ₄ separation		
CB6@MIL-101-CI-31	CB6	Impregnation	SO ₂ adsorption	70	
(31 wt% of CB6)					
MC5@MIL-100(Fe)-23	MC5	Bottle-around-ship	Pb ²⁺ removal	39	
(23 wt% of MC5)					
Metal organic polyhedron@MOF					
M ₆ L ₄ @MIL-101(Cr)	M ₆ L ₄	Ship-in-bottle	Oxidation of	34	
			benzyl alcohol		
NH ₂ -MOP@DUT-68(Zr)	NH ₂ -MOP	Ship-in-bottle	Proton conductivity	72	
	or $H_2N-M_4L_6$				
MOP-3@PCN-777	MOP-3	Impregnation	Proton conductivity	73	
NH2-MOP@MOA	NH ₂ -MOP	Bottle-around-ship	Oxoanion removal	74	
	or $H_2N-M_4L_6$				

Note: the structures of representative host molecules can be seen in Fig. 2. The reference number and content are consistent with those in the main text.

3

Table	S2 Exa	mples	of the	synthetic	approaches	and	applications	of	representative	enzyme@MOF	as
host@	MOF m	aterials	S.								

Material	Material Enzymes Approach		Application	Ref
MP-11@Cu-MOF	MP-11 (1.1 nm×1.7 nm×3.3 nm)	Impregnation	Oxidation of	75
			methylene blue	
MP-11@Tb-mesoMOF	MP-11 (1.1 nm×1.7 nm×3.3 nm)	Impregnation	Oxidation of 3,5-Di-t-	76
			butylcatechol	
Cyt c@Tb-mesoMOF	Cyt c (2.6 nm×3.2nm×3.3 nm)	Impregnation	-	77
Protease@MIL-101-NH ₂	Protease (2.85 nm)	Impregnation	Proteolytic activity for	78
			glycyl-L-tyrosine-	
HRP@PCN-333(AI)	HRP (4.0 nm×4.4 nm×6.8 nm)	Impregnation	Oxidation of	79
			o-Phenylenediamine	
Cyt c@PCN-333(AI)	Cyt c (2.6 nm×3.2nm×3.3 nm)	Impregnation	Oxidation	79
MP-11@PCN-333(AI)	MP-11 (1.1 nm×1.7 nm×3.3 nm)		of ABTS	
cutinase@NU-1000(Zr)	Cutinase	Impregnation	Hydrolysis of PNPB	80
cutinase@PCN-600(Zr)				
HRP/GOx@PCN-888	GOx (6.0 nm×5.2 nm×7.7 nm)	Impregnation	Oxidation of glucose;	81
	HRP (4.0 nm×4.4 nm×6.8 nm)		Oxidation of ABTS	
Cyt c@ZIF-8	Cyt c (2.6 nm×3.2nm×3.3 nm)	Bottle-around-ship	Detection of H ₂ O ₂	83
FCAT@ZIF-90				
FCAT@MAF-7	FCAT (4.4 nm×4.9 nm×5.6 nm)	Bottle-around-ship	H ₂ O ₂ degradation	84
FCAT@ZIF-8				
nano BCL@MTV-ZIFs	BCL	Bottle-around-ship	Kinetic resolution of	85
			(R,S)-2-octanol	
Cyt c@NKMOF-101-Zn	Cyt c (2.6 nm×3.2nm×3.3 nm)	Bottle-around-ship	Oxidation of ABTS	86
α-G/GOx@Cu-MOF	α-glucosidase	Bottle-around-ship	Hydrolysis and oxidation	87
	and GOx		of maltose	
CRL@ZIF-8	CRL	Bottle-around-ship	Hydrolysis of PNPB	88
urease@ZIF-8	Urease	Bottle-around-ship	Hydrolysis	89
HRP@ZIF-8	HRP (4.0 nm×4.4 nm×6.8 nm)		Oxidation	
catalase@ZIF-90	catalase	Bottle-around-ship	H ₂ O ₂ degradation	90
OPAA@PCN-128y	OPAA (4.4 nm×4.4nm×7.8 nm)	Impregnation	Detoxifying DFP and	104
			Soman	
β-G@Cu(PABA)	β-Glucosidase	Bottle-around-ship	Hydrolysis of cellulose	105
GOx/HRP@ZIF-8	GOx (6.0 nm×5.2 nm×7.7 nm)	Bottle-around-ship	Oxidation of glucose and	107
	HRP (4.0 nm×4.4 nm×6.8 nm)		ABTS	
FaldDH/FateDH@ZIF-8	FaldDH and FateDH	Bottle-around-ship	Photocatalytic CO ₂	108
			reduction	

Note: The reference number and content are consistent with those in the manuscript.

Material	Enzymes	Approach	Application	Ref	
GOx@ZIF-8	GOx (6.0 nm×5.2 nm×7.7 nm)	Bottle-around-ship	Detection of glucose	110	
				111	
GOx/HRP@DNA/ZIF-8	GOx (6.0 nm×5.2 nm×7.7 nm)	Bottle-around-ship	Detection of glucose	112	
	HRP (4.0 nm×4.4 nm×6.8 nm)				
GOx@MAF-2	GOx (6.0 nm×5.2 nm×7.7 nm)	Bottle-around-ship	Detection of glucose	113	
GOD@GA-Ni/Cu-MOF	GOD	Impregnation	Detection of glucose	114	
Urease@ZIF-8	Urease	Bottle-around-ship	Detection of urea	115	
UOx/HRP@ZIF-8	Urate oxidase	Bottle-around-ship	Detection of uric acid	115	
	HRP (4.0 nm×4.4 nm×6.8 nm)				
β-Gal/Ox/HRP@ZIF-8	β-galactosidase and	Bottle-around-ship	Detection of lactose	115	
	oxidase and HRP				
Peptide-HRP@ZIF-90	HRP (4.0 nm×4.4 nm×6.8 nm)	Bottle-around-ship	Detection of SPARC	116	
Lac@MCS/UiO-66-NH ₂	Laccase	Impregnation	Tetracycline detection	117	
Cas12a@MAF-7	Cas12a nuclease	Impregnation	Detection of	118	
			SARS-CoV-2 RNA		

Table S2 (continued) Examples of the synthetic approaches and applications of representative enzyme@MOF as host@MOF materials.

Note: The reference number and content are consistent with those in the manuscript.

Abbreviations and acronyms used in Table S1 and Table S2:

For MOFs:

MOM = metal-organic material as a series of specific MOFs;

HKUST = Hong Kong University of Science and Technology;

HKUST-1 = a MOF composed of Cu₂ nodes and trimesic acid ligands;

ZIF = Zeolitic Imidazolate Framework;

ZIF-8 = a ZIF composed of zinc ions and 2-methylimidazole ligands;

ZIF-67 = a ZIF composed of cobalt ions and 2-methylimidazole ligands;

ZIF-7 = a ZIF composed of zinc ions and benzimidazole ligands;

ZIF-90 = a ZIF composed of zinc ions and imidazole-2-carboxaldehyde ligands;

PCN = Porous Coordination Network;

PCN-224 = a MOF composed of Zr_6 nodes and meso-5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin;

PCN-777 = a MOF composed of Zr_6 nodes and 4,4',4"-s-triazine-2,4,6-triyl-tribenzoate;

PCN-333 = a MOF composed of aluminum ions and 4,4',4"-s-triazine-2,4,6-triyl-tribenzoate ligands;

PCN-600 = a MOF composed of Fe₃ nodes and tetrakis (4-carboxyphenyl) porphyrin ligands;

PCN-888 = a MOF composed of aluminum trimeric cluster and heptazine based tritopic ligand;

PCN-128y = a MOF composed of Zr_6 nodes and (4',4''',4''''''-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'-biphenyl]-4-carboxylic acid))) (H₄ETTC);

MIL = Material Institute Lavoisier;

MIL-101(M) = a MOF composed of M₃O (M= Cr, Fe,) nodes and terephthalic acid ligands;

MIL-101-NH₂ = a MOF composed of Cr_3O nodes and 2-aminoterephthalic acid ligands;

UiO = University of Oslo;

UiO-66 = a MOF composed of Zr_6 nodes and 1,4-benzenedicarboxylic acid ligands;

UiO-66-NH₂ = a MOF composed of Zr₆ nodes and 2-aminoterephthalic acid ligands;
MOF-5 = a MOF composed of zinc ions and terephthalic acid ligands;
DUT = Dresden University of Technology;
DUT-68 = a MOF composed of Zr₆ nodes and 2,5-thiophenedicarboxylic acid ligands (H₂TDC);
NU = Northwestern University;
NU-1000 = a MOF composed of Zr₆ nodes and 1,3,6,8-tetrakis(p-benzoic acid)pyrene ligands;
MAF = Metal Azolate Framework;
MAF-7 = a MOF composed of zinc ions and 3-methyl-1,2,4-triazole ligands;
NKMOF-101-Zn = a MOF composed of zinc ions and squaric acid ligands;

MOA = Metal-organic aerogel;

For molecules:

[H₂TMPyP]⁴⁺[X]₄ = 5,10,15,20-tetrakis(1-methyl-4-pyridinium)porphyrin,

X= *p*-tosyl⁻, Cl⁻, or l⁻ as shown in Fig. 2a, top;

[H⁺]₄[H₂4SP]⁴⁻ = tetrakis(4-sulphonatophenyl)porphyrin as shown in Fig. 2a, middle;

H₂TCPP = meso-5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin as shown in Fig. 2a, bottom;

 H_2Pc = phthalocyanine as shown in Fig. 2b, top;

 H_2PcF_{16} = perfluorinated phthalocyanine as shown in Fig. 2b, bottom;

18C6 = 18-crown-6 as shown in Fig. 2c;

BCE = benzo-12-crown-4-ether as shown in Fig. 2d;

DB15C5 = dibenzo-15-crown-5 as shown in Fig. 2e;

DB18C6 = dibenzo-18-crown-6 as shown in Fig. 2f;

B15C5 = benzo-15-crown-5 as shown in Fig. 2g;

CA-1 = calix[4]arene derivate with carboxylic acid groups at ortho-position as shown in Fig. 2h;

CA-2 = thiacalix[4]arene with carboxylic acid groups at ortho-position as shown in Fig. 2i;

MeMeCH₂ = a bowl-shaped cavitand with four methyl groups on both rims as shown in Fig. 2j;

MC5 = decamethylcucurbit[5]uril as shown in Fig. 2k;

CB6 = cucurbit[6]uril as shown in Fig. 2l;

M₆L₄ = an octahedral assembly with six Pd(II) nodes and four 1,3,5-tris(4-pyridyl)-2,4,6-triazine ligands, Fig. 2m;

 $H_2N-M_4L_6$ = an amino-functionalized Zr-based tetrahedron with the formula of

 $({[Cp_3Zr_3O(OH)_3]_4(NH_2-BDC)_6} \cdot CI_4)$ as shown in Fig. 2n;

MOP-3 = a nanosized cuboctahedron with the formula of $Na_6H_{18}[Cu_{24}(SO_3 - mBDC)_{24}(G)_{24}]$,

G represents coordinated solvent on Cu_2 node.

MP-11 = microperoxidase-11 with a molecular size of 1.1 nm×1.7 nm×3.3 nm;

Cyt c = cytochrome c with a molecular size of 2.6 nm×3.2nm×3.3 nm;

Protease with a molecular size of 2.85 nm;

HRP = horseradish peroxidase with a molecular size of 4.0 nm×4.4 nm×6.8 nm;

GOx = glucose oxidase with a molecular size of 6.0 nm×5.2 nm×7.7 nm;

FCAT = fluorescein-tagged catalase with a molecular size of 4.4 nm×4.9 nm×5.6 nm;

- BCL = Burkholderia cepacian lipase;
- α -G = α -glucosidase;
- β -G = β -glucosidase;
- OPAA = organophosphorus acid anhydrolase with a molecular size of 4.4 nm×4.4nm×7.8 nm;
- PABA = *p*-aminobenzoic acid;
- CRL = lipase from Candida rugosa;
- GOD = glucose oxidase;
- UOx = Urate oxidase;
- ABTS = 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate;
- PNPB = p-nitrophenyl butyrate;
- DFP = diisopropyl fluorophosphate;
- Soman = O-pinacolyl methyl fluorophosphonate;
- SPARC = secreted protein acidic and rich in cysteine.

Fig. S1. a) View of the crystal packing in Cd@TMPyP@MOM-11(Cd); b) coordination environments of the Cd²⁺ ions in Cd@TMPyP@MOM-11(Cd). Turquoise Cd, beige C, red O, blue N. Reprocuced from ref. 49 with permission of Wiley-VCH Verlag GmbH & Co., Copyright 2012.

Fig. S2. a) Schematic preparation of the cuboctahedron NH₂-MOP, and b) the "ship-in-bottle" synthesis of NH₂-MOP@DUT-68. Adapted from ref. 72 with permission of Wiley-VCH Verlag GmbH & Co., Copyright 2021.

Fig. S3. SO₂ sorption isotherms of CB6@MIL-101-CI-31 up to 1 bar at 293K and 298K, respectively. a) full pressure range, and b) low pressure range. Reproduced from ref. 70 with permission of the Royal Society of Chemistry, Copyright 2021.

Fig. S4 Representative organic reactions catalyzed by host@MOF and metal@host@MOF materials. a) Oxidation of cyclohexane, b) oxidation of tetralin, c) oxidation of benzyl alcohol, d) oxidation of styrene, e) oxidation of trans-stilbene, f) cyclic carbonation, g) benzamide reaction. The used catalysts and oxidant/reagent are presented above and below the arrow, respectively.