Supplementary Information (SI) for Chemical Society Reviews. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Multidimensionally ordered mesoporous intermetallics: Frontier nanoarchitectonics for advanced catalysis

Hao Lv,^{1,2} and Ben Liu^{1,*}

¹Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China. *Email: ben.liu@scu.edu.cn

Table S1. Comparison of the three synthetic strategies for preparing MOMIs.

Synthetic Strategy	Advantages	Disadvanteges
Concurrent Template Synthetic Strategy	(1) highly ordered mesostructures and controllable porous structures (2) Universally to synthesize of various components MOMIs	(1)Multi-step synthesis and relatively complex peocesses (2) Limited templates structures
Self-Template Synthetic Strategy	(1) Simple synthesis steps(2) Expandable to core-shell structures	(1) Uncontroable pore structure (2) Limited compositions
Dealloying Synthetic Strategy	(1) Macroscale preparation(2) Simple synthesis steps	(1) Limited compositions (2) Sacrificial dealloyed metals

Table S2. Summary of different MOMIs for catalytic applications.

Synthetic Strategy	MOMIs	Catalytic applications
Concurrent Template Synthetic Strategy	$Pt_1Sn_1\ MOMIs; \\ Pt_3Sn_1\ MOMIs$	3-nitrophenylacetylene (3-NPA) semi- hydrogenation
Concurrent Template Synthetic Strategy	High-entropy PtPdFeCoNi MOMIs; Ga ₃ Pt ₅ MOMIs; Ga ₁ Pt ₁ MOMIs	Electrochemical oxidation reduction reaction (ORR)
Concurrent Template Synthetic Strategy	Trimetallic PtZnCo MOMIs (PtZnSc; PtZnV; PtZnCr; PtZnMn; PtZnFe; PtZnNi; PtZnCu; PtZnGa MOMIs) PtP ₂ MOMIs	Electrochemical hydrogen evolution reaction (HER)
Concurrent Template Synthetic Strategy	$\mathrm{Pd}_{2}\mathrm{B}\;\mathrm{MOMIs}$	p-nitrophenol hydrogenation
Self-Template Synthetic Strategy	PdPb MOMIs	Electrochemical oxidation reduction reaction (ORR)
Self-Template Synthetic Strategy	AuCu ₃ @Au MOMIs	Electrochemical nitrate reduction reaction
Dealloying Synthetic Strategy	Co ₇ Mo ₆ MOMIs	Electrochemical hydrogen evolution reaction (HER)

²School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China