Supplementary information

Metal Support Interactions in Metal Oxide-Supported Atomic, Cluster, and Nanoparticle Catalysis

Denis Leybo^{†1}, Ubong J. Etim^{†2}, Matteo Monai³, Simon R. Bare^{*4,5}, Ziyi Zhong^{*2}, Charlotte Vogt^{*1}

¹ Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel

² Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China

³ Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

⁴ Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

⁵ SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

* Corresponding author

†	These	authors	contributed	equally	to	this	work.
---	-------	---------	-------------	---------	----	------	-------

Figure S1. Standard enthalpy of formation and standard Gibbs energy of formation of selected binary oxides in kJ/mol.

Figure	S2.	Hydrogen	and	CO	reduction	reaction	Gibbs	energy	change	in	kJ/mol	of	oxide.
--------	-----	----------	-----	----	-----------	----------	-------	--------	--------	----	--------	----	--------

<u></u>				ΔG of reduction by	Enthalpy of oxygen	
	AH. 208K	AG. 208K	AG of reduction by H	CO @ 298K	vacancy	
Oxides	(kJ/mol)	(kJ/mol)	298K (kJ/mol of oxide)	oxide)	(eV/vac)	Ref
B ₂ O ₃	-1273.5	-1194.325	508.58	422.773		
MgŐ	-601.6	-569.352	340.771	312.168	6	1
AI_2O_3	-1675.692	-1582.274	896.529	810.722	7	2
SiO ₂	-910.857	-856.443	399.279	342.075	6.4	2
CaO	-634.92	-603.297	374.716	346.113	6.3	1
TiO ₂	-944.747	-889.417	432.254	375.049	5.7	2
VO ₂	-944.747	-658.637	201.474	144.269		
$V_2 O_5$	-1551	-1418.576	275.667	132.656	4.7	1
Cr_2O_3	-1134.701	-1053.111	367.365	281.558	4.11	3
CrO ₂	-581.576	-529.359	72.195	14.991	3	4
MnŌ	-385.221	-362.834	134.253	105.65		
Mn ₃ O ₄	-1387.799	-1283.042	368.714	254.305	4.9	1
Mn ₂ O ₃	-956.881	-878.853	193.108	107.301		
MnO ₂	-520.029	-465.074	7.911	-49.294	4.5	1
FeO	-267.27	-245.724	17.143	-11.46	4.2	2
Fe ₃ O ₄	-1118.383	-1015.226	100.899	-13.51		
Fe ₂ O ₃	-823	-741.044	55.298	-30.509	4.38	5
CoO	-237.944	-214.198	-14.384	-42.986	4.1	2
Co ₃ O ₄	-910.02	-794.901	-119.426	-233.835	4.2	1
NiO	-239.7	-211.585	-16.996	-45.599	3.8	1
Cu ₂ O	-170.6	-147.844	-80.738	-109.34	3.8	1
	-155.8	-128 077	-100 505	-129 107	3.3	1
ZnO	-350.5	-320.374	91.792	63.19	4.2	1
Ga ₂ O ₂	-1091	-1000.292	314.546	228,739	4.8	2
GeO ₂	-579 902	-521 307	64 143	6.938	4 4	2
	-654.796	-576.651	-109.094	-194.901		
SrO	-591	-560 591	332 009	303 407	6.5	2
$Y_{2}O_{2}$	-1905	-1816 11	1130 365	1044 558	67	2
7_2O_3	-1100.3	-1042 477	585 313	528 109	6.8	2
NbO ₂	-794 96	-739 235	282 072	224 867	5.6	1
Nb₂O₅	-1899 536	-1765 937	623 028	480 017	0.0	
MoO ₂	-589.3	-533 487	76 323	19 119		
MoO ₂	-744 6	-667 491	-18 254	-104 061	2 48	6
RuO ₂	-305 014	-252 657	-204 507	-261 711	2.10	
Rh ₂ O ₂	-355 64	-276 761	-408 984	-494 791	34	2
PdO	-115 478	-85 22	-143 362	-171 964	0.1	
O _c pA	-31 13	-11 175	-217 406	-246 009		
AdO	-11 585	14 494	-243 076	-271 678		
CdO	-258 99	-229 305	0 723	-27 879	28	2
IncOc	-923	-827 227	141 482	55 675	37	2
SnO	-280 709	-251 912	23.33	-5 272	4 1	1
SnO ₂	-577 631	-515 819	58 655	1 451	4.1	2
Sh ₂ O ₂	-708 547	-628 384	-57 361	-143 168	3 45	6
Sb_2O_3	-971 901	-829 143	-313 766	-456 778	0.10	
BaO	-548	-520.25	291 668	263 066	59	2
	-1795 5	-1707 788	1022 042	936 236	6.69	6
	-1090.4	-1027 102	569 938	512 734	2.87	6
	-1809 6	-1720 875	1035 129	949 323	2.01	
PrO_{-}	-040 35	- 1720.073	432 805	375.6		
	-3-3.33	-003.300	1035 705	010.0 010 202		
	-1115 6	-1050 152	601 00 <i>/</i>	544 780	7	2
1102	-1110.0	-1009.100	001.004	077.103	ı	

Table S1. Energies of formation for several metal oxides calculated using HSC 5.11 software, and enthalpy of oxygen formation data from literature, indicated in the last column.

Ta ₂ O ₅	-2049	-1913.645	770.736	627.725		
WO ₃	-842.909	-764.065	78.319	-7.487	3.5	7
ReO₃	-589.107	-507.132	-178.614	-264.421		
OsO ₂	-295	-239.644	-217.52	-274.725		
OsO4	-394.099	-304.942	-609.385	-723.794		
PtO ₂	-133.888	-80.894	-376.27	-433.474	2.9	1
TI_2O_3	-387	-304.614	-381.131	-466.938		
PbO	-218.062	-188.641	-39.941	-68.543	3.76	6
Pb_3O_4	-718.686	-601.591	-312.736	-427.145		
Bi ₂ O ₃	-578.01	-497.097	-188.648	-274.455	3.12	6

Table S2. Reported band gaps for several metal oxides.

Oxides	Band Gap (eV)	Ref
B_2O_3	6.2	8
MgO	7.8	9
Al_2O_3	8	10
SiO ₂	9	11
CaO	7	12
TiO	3.05	13
VO	0.7	14
V ₂ O ₂	22	15
$V_2 O_5$	2.2	16
	0	17
	0	18
Min O	J.7	19
	2.21	18
M_2O_3	4.1	18
	1.3	20
	0.1	20
Fe ₂ O ₃	2.3	21
000	1.95	22
Co_3O_4	1.6	23
NiO	3.4	24
Cu ₂ O	2.17	24
CuO	1.79	19
ZnO	3.4	24
Ga_2O_3	5.3	25
GeO ₂	4.7	25
As_2O_3	4.15	26
SrO	6.14	27
Y_2O_3	6	28
ZrO ₂	5	21
NbO ₂	0.5	29
Nb_2O_5	3.4	29
MoO ₂	2.83	30
MoO ₃	3.36	31
RuO ₂	2.26	32
Rh_2O_3	1.2	33
PdO	2.13	34
Ag ₂ O	1.3	35
AgO	1.1	3535
CdO	2.16	3636
In ₂ O ₃	2.9	24
SnO	2.8	24
SnO ₂	3.7	25
Sb ₂ O ₃	3.54	37
Sb_2O_5	0.76	37
BaO	3.7	38
La_2O_3	3.61	39
CeO ₂	2.8	21
Pr_2O_3	3.7	40
PrO ₂	4.5	40
Nd_2O_3	4.1	41
HfO ₂	5.8	11
Ta ₂ O ₅	4.5	4242
WO_3	2.8	21
ReO₃	0	43
PtO ₂	1.49	44
TI_2O_3	1.4	45

PbO	2.1	46
Pb ₃ O ₄	2.3	46
Bi ₂ O ₃	2.91	47

Metal	МО	WF M (eV)	CBM MO (eV)	ΔWF (eV)	new E _F (eV)	E _F - d- band center (eV)	E _C (eV)	Loading (wt.%)	Reac tion T (°C)	Metal Particle Size (nm)	TOF (mol CO ₂ to products s ⁻¹)	Log (TOF)	Main Product	R ef.
Rh	AI_2O_3	4.98	2.28	-2.7	4.98	6.71	-1.73	1.00	150	3.60	0.0009	-3.03621	CH_4	48
Rh	AI_2O_3	4.98	2.28	-2.7	4.98	6.71	-1.73	1.50	150	4.50	0.0012	-2.9393	CH_4	48
Rh	AI_2O_3	4.98	2.28	-2.7	4.98	6.71	-1.73	2.00	150	6.10	0.0023	-2.64207	CH_4	48
Rh	AI_2O_3	4.98	2.28	-2.7	4.98	6.71	-1.73	3.00	150	15.40	0.0033	-2.47756	CH_4	48
Rh	AI_2O_3	4.98	2.28	-2.7	4.98	6.71	-1.73	5.00	150	15.10	0.0020	-2.6925	CH_4	48
Ni	SiO ₂	5.2	0.2	-5	5.2	6.49	-1.29	11.80	200	3.50	0.0006	-3.19654	CH_4	49
Ni	SiO ₂	5.2	0.2	-5	5.2	6.49	-1.29	6.70	200	2.50	0.0007	-3.17005	CH_4	49
Ni	SiO ₂	5.2	0.2	-5	5.2	6.49	-1.29	5.00	200	1.60	0.0008	-3.10458	CH_4	49
Ni	SiO ₂	5.2	0.2	-5	5.2	6.49	-1.29	19.50	200	5.00	0.0014	-2.86012	CH_4	49
Ni	SiO ₂	5.2	0.2	-5	5.2	6.49	-1.29	1.00	200	1.10	0.0004	-3.45593	CH_4	49
Ni	SiO ₂	5.2	0.2	-5	5.2	6.49	-1.29	60.00	200	6.90	0.0037	-2.43415	CH_4	49
Rh	AI_2O_3	4.98	2.28	-2.7	4.98	6.71	-1.73	1.00	200	3.60	0.0172	-1.76447	CH_4	48
Rh	AI_2O_3	4.98	2.28	-2.7	4.98	6.71	-1.73	1.50	200	4.50	0.0124	-1.90658	CH_4	48
Rh	AI_2O_3	4.98	2.28	-2.7	4.98	6.71	-1.73	2.00	200	6.10	0.0152	-1.81816	CH_4	48
Rh	AI_2O_3	4.98	2.28	-2.7	4.98	6.71	-1.73	3.00	200	15.40	0.0188	-1.72584	CH_4	48
Rh	AI_2O_3	4.98	2.28	-2.7	4.98	6.71	-1.73	5.00	200	15.10	0.0119	-1.92445	CH_4	48
Ni	AI_2O_3	5.2	2.28	-2.92	5.2	6.49	-1.29	20.00	220	14.30	0.0005	-3.30103	CH_4	50
Ni	H-Al ₂ O ₃ - 500	5.2	2.28	-2.92	5.2	6.49	-1.29	20.00	220	6.80	0.0012	-2.92082	CH_4	50
Ni	H-Al ₂ O ₃ - 400	5.2	2.28	-2.92	5.2	6.49	-1.29	20.00	220	4.60	0.0024	-2.61979	CH ₄	50
Cu	SiO ₂	4.75	0.2	-4.55	4.75	7.42	-2.67	3.70	230	2.10	0.0006	-3.25964	CH₃OH	51
Ni	AI_2O_3	5.2	2.28	-2.92	5.2	6.49	-1.29	10.00	250	3.70	0.0800	-1.09691	CH_4	52
Ni	ZSM-5	5.2	2.28	-2.92	5.2	6.49	-1.29	10.00	250	14.30	0.0076	-2.1209	CH_4	53
Ni	SBA-15	5.2	0.2	-5	5.2	6.49	-1.29	10.00	250	19.50	0.0059	-2.22768	CH_4	53

Table S3. A collection of relevant turnover frequencies (TOFs) values along with catalytic conditions for thermocatalytic CO₂ hydrogenation over different metal catalysts.

Ni	MCM-41	52	0.2	-5	52	6 4 9	-1 29	10.00	250	30 30	0 0034	-2 46597	CH.	53
Co		5	0.2	-1.8	5	6.17	_1 17	10.00	250	10.00		-2 15/10		54
Ni		52	0.2	-4.0	52	6.49	1 20	11.80	200	3 50	0.0070	1 6068		49
NI		5.2	0.2	-5 5	5.2	6.49	1 20	6 70	300	2.50	0.0201	-1.0900		49
Ni		5.2	0.2	-5	5.2	6.49	1 20	5.00	300	2.50	0.0239	-1.5007		49
NI		5.2	0.2	-5 5	5.2	6.49	1 20	10.50	300	5.00	0.0243	-1.01000		49
INI NG	SIO ₂	5.2	0.2	-0 5	5.2	6.49	-1.29	19.50	200	5.00	0.0404	-1.39302		49
		5.2	0.2	-5 F	5.2	0.49	-1.29	1.00	200	1.10	0.0104	-1.01240		10
		5.2	0.2	-5 0.00	5.2	0.49	-1.29	60.00	300	0.90	0.0403	-1.39469		
NI		5.2	2.28	-2.92	5.2	6.49	-1.29	10.00	300	3.70	0.0800	-1.09691		52
NI	AI-C	5.2	2.28	-2.92	5.2	6.49	-1.29	15.00	300	5.10	0.0413	-1.38405	CH ₄	55
NI	Al-p	5.2	2.28	-2.92	5.2	6.49	-1.29	15.00	300	5.60	0.0970	-1.01323	CH ₄	55
Со	Al ₂ O ₃	5	2.28	-2.72	5	6.17	-1.17	1.00	300	10.00	0.0105	-1.97881	CO/CH ₄	56
Pt	SiO ₂	5.4	0.2	-5.2	5.4	7.65	-2.25	1.67	300	2.00	0.5800	-0.23657	CO	57
Ru	AI_2O_3	4.71	2.28	-2.43	4.71	5.85	-1.14	5.00	300	7.10	0.3800	-0.42022	CH₄	58
Pt	SiO ₂	5.4	0.2	-5.2	5.4	7.65	-2.25	1.67	310	2.00	0.7400	-0.13077	CO	57
Pt	SiO ₂	5.4	0.2	-5.2	5.4	7.65	-2.25	1.67	320	2.00	0.9100	-0.04096	CO	57
Co	AI_2O_3	5	2.28	-2.72	5	6.17	-1.17	1.00	325	10.00	0.0212	-1.67366	CO/CH ₄	56
Pt	SiO ₂	5.4	0.2	-5.2	5.4	7.65	-2.25	1.67	330	2.00	1.1000	0.041393	CO	57
Pt	SiO ₂	5.4	0.2	-5.2	5.4	7.65	-2.25	1.67	340	2.00	1.3200	0.120574	CO	56
Co	AI_2O_3	5	2.28	-2.72	5	6.17	-1.17	1.00	350	10.00	0.0300	-1.52288	CO/CH ₄	56
Pt	SiO ₂	5.4	0.2	-5.2	5.4	7.65	-2.25	1.67	350	2.00	1.5500	0.190332	CO	57
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	0.50	135	2.00	0.0006	-3.18842	CH_4	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	0.80	135	4.00	0.0017	-2.78252	CH_4	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	1.00	135	5.00	0.0020	-2.6968	CH_4	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	2.00	135	7.00	0.0028	-2.54821	CH₄	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	3.00	135	17.00	0.0053	-2.27491	CH₄	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	5.00	135	19.00	0.0044	-2.36051	CH_4	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	0.50	150	2.00	0.0002	-3.6216	CH ₄	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	0.80	150	4.00	0.0008	-3.10403	CH ₄	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	1.00	150	5.00	0.0010	-2.99568	CH₄	59

Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	2.00	150	7.00	0.0016	-2.7986	CH_4	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	3.00	150	17.00	0.0033	-2.4828	CH_4	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	5.00	150	19.00	0.0025	-2.5986	CH_4	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	0.50	165	2.00	0.0001	-4.0000	CH_4	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	0.80	165	4.00	0.0004	-3.41341	CH_4	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	1.00	165	5.00	0.0006	-3.24033	CH_4	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	2.00	165	7.00	0.0009	-3.03245	CH_4	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	3.00	165	17.00	0.0018	-2.73755	CH_4	59
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	5.00	165	19.00	0.0015	-2.81816	CH_4	59
Ni	TiO ₂	5.2	7.52	2.32	6.36	7.65	-1.29	5.00	200	9.40	0.0042	-2.37986	CH_4	60
Ru	TiO ₂	4.71	7.52	2.81	6.115	7.26	-1.14	0.50	200	2.10	0.0150	-1.82391	CH_4	61
Ru	TiO ₂ -200	4.71	7.52	2.81	6.115	7.26	-1.14	2.30	200	1.70	0.0420	-1.37675	CH_4	62
Ru	TiO ₂ -300	4.71	7.52	2.81	6.115	7.26	-1.14	2.30	200	2.20	0.0960	-1.01773	CH_4	62
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	6.00	200	2.50	0.0095	-2.02228	CO/CH ₄	63
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	0.50	200	0.94	0.0137	-1.86328	CO/CH ₄	63
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	2.00	200	1.40	0.0178	-1.74958	CO/CH ₄	63
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	3.00	200	2.10	0.0215	-1.66756	CO/CH ₄	63
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	4.00	200	1.60	0.0191	-1.71897	CO/CH ₄	63
Rh	TiO ₂	4.98	7.52	2.54	6.25	7.98	-1.73	6.00	200	2.50	0.0232	-1.63451	CO/CH ₄	63
Ni	TiO ₂	5.2	7.52	2.32	6.36	7.65	-1.29	5.00	225	9.40	0.0056	-2.25493	CH_4	60
Ru	TiO ₂	4.71	7.52	2.81	6.115	7.26	-1.14	0.50	225	2.10	0.0327	-1.48545	CH_4	61
Ru	TiO ₂	4.71	7.52	2.81	6.115	7.26	-1.14	0.50	225	2.10	0.0368	-1.43415	CH_4	61
Cu	ZrO ₂	4.75	6.86	2.11	5.805	8.48	-2.67	0.80	230	2.20	0.0016	-2.79588	CH₃OH	51
Ni	ZrO ₂ -P	5.2	6.86	1.66	6.03	7.32	-1.29	8.70	235	9.30	0.0580	-1.23657	CH_4	64
Ni	ZrO ₂ -C	5.2	6.86	1.66	6.03	7.32	-1.29	10.00	235	16.00	0.0400	-1.39794	CH_4	64
Ni	TiO ₂	5.2	7.52	2.32	6.36	7.65	-1.29	5.00	250	9.40	0.0106	-1.97469	CH_4	60
Со	TiO ₂	5	7.52	2.52	5	6.17	-1.17	10.00	250	10.00	0.0200	-1.69897	CO/CH ₄	54
Cu	TiO ₂ -x- 500	4.75	7.52	2.77	6.135	8.81	-2.67	5.90	250	5.50	0.0141	-1.85078	CH₃OH	65
Cu	TiO ₂	4.75	7.52	2.77	6.135	8.81	-2.67	5.90	250	5.00	0.0017	-2.76955	CH₃OH	65

Ru	TiO ₂	4.71	7.52	2.81	6.115	7.26	-1.14	0.50	250	2.10	0.0590	-1.22915	CH_4	61
Ru	TiO ₂	4.71	7.52	2.81	6.115	7.26	-1.14	0.50	250	2.10	0.0657	-1.18243	CH_4	61
Cu	TiO ₂ -x- 500	4.75	7.52	2.77	6.135	8.81	-2.67	5.90	300	5.50	0.0260	-1.58503	CH₃OH	65
Cu	TiO ₂	4.75	7.52	2.77	6.135	8.81	-2.67	5.90	300	5.00	0.0029	-2.5376	CH₃OH	65
Pt	TiO ₂	5.4	7.52	2.12	6.46	8.71	-2.25	1.67	300	1.00	2.7600	0.440909	CO	57
Pt	TiO ₂	5.4	7.52	2.12	6.46	8.71	-2.25	1.67	310	1.00	3.3100	0.519828	CO	57
Fe	ZrO_2	4.7	6.86	2.16	5.78	6.70	-0.92	10.00	320	12.90	0.0450	-1.34679	CO/CH ₄	66
Fe	ZrO ₂	4.7	6.86	2.16	5.78	6.70	-0.92	10.00	320	9.80	0.0200	-1.69897	CO/CH ₄	66
Fe	ZrO ₂	4.7	6.86	2.16	5.78	6.70	-0.92	10.00	320	6.10	0.0090	-2.04576	CO/CH ₄	66
Fe	ZrO ₂	4.7	6.86	2.16	5.78	6.70	-0.92	10.00	320	4.00	0.0060	-2.22185	CO/CH ₄	66
Fe	ZrO ₂	4.7	6.86	2.16	5.78	6.70	-0.92	10.00	320	2.50	0.0040	-2.39794	CO/CH ₄	66
Fe	ZrO ₂	4.7	6.86	2.16	5.78	6.70	-0.92	10.00	320	2.50	0.0001	-3.85387	CO/CH ₄	66
Fe	ZrO ₂	4.7	6.86	2.16	5.78	6.70	-0.92	10.00	320	2.50	0.0001	-3.85387	CO/CH ₄	66
Fe	ZrO ₂	4.7	6.86	2.16	5.78	6.70	-0.92	10.00	320	2.50	0.0001	-3.85387	CO/CH ₄	66
Pt	TiO ₂	5.4	7.52	2.12	6.46	8.71	-2.25	1.67	320	1.00	3.9800	0.599883	CO	57
Ru	TiO ₂	4.71	7.52	2.81	6.115	7.26	-1.14	0.50	320	4.20	0.2580	-0.58838	CH_4	61
Cu	TiO ₂ -x- 500	4.75	7.52	2.77	6.135	8.81	-2.67	5.90	325	5.50	0.0206	-1.68613	CH₃OH	65
Cu	TiO ₂	4.75	7.52	2.77	6.135	8.81	-2.67	5.90	325	5.00	0.0023	-2.63827	CH₃OH	65
Pt	TiO ₂	5.4	7.52	2.12	6.46	8.71	-2.25	1.67	330	1.00	4.6700	0.669317	CO	57
Pt	TiO ₂	5.4	7.52	2.12	6.46	8.71	-2.25	1.67	340	1.00	5.4500	0.736397	CO	57
Pt	TiO ₂	5.4	7.52	2.12	6.46	8.71	-2.25	1.67	350	1.00	6.2600	0.796574	CO	57
Pt	TiO ₂	5.4	7.52	2.12	6.46	8.71	-2.25	0.50	350	1.70	0.0855	-1.06803	CO	67
Pt	TiO ₂	5.4	7.52	2.12	6.46	8.71	-2.25	0.50	350	2.25	0.0825	-1.08355	CO	67
Pt	TiO ₂	5.4	7.52	2.12	6.46	8.71	-2.25	0.50	350	3.05	0.0920	-1.03621	CO	67
Pt	TiO ₂	5.4	7.52	2.12	6.46	8.71	-2.25	0.50	350	1.50	0.1050	-0.97881	CO	67
Ru	TiO ₂	4.71	7.52	2.81	6.115	7.26	-1.14	0.50	350	4.20	0.4260	-0.37059	CH_4	61
lr	TiO ₂	5.3	7.52	2.22	6.41	8.52	-2.11	0.50	350	1.50	0.0220	-1.65758	CO	68
lr	TiO ₂	5.3	7.52	2.22	6.41	8.52	-2.11	1.00	350	1.10	0.0150	-1.82391	CO	68
lr	TiO ₂	5.3	7.52	2.22	6.41	8.52	-2.11	5.00	350	2.00	0.0013	-2.88606	CO/CH ₄	68

References

- (1) Wan, Z.; Wang, Q.-D.; Liu, D.; Liang, J. Data-driven machine learning model for the prediction of oxygen vacancy formation energy of metal oxide materials. *Phys. Chem. Chem. Phys.* **2021**, 23, 15675-15684.
- (2) Deml, A. M.; Holder, A. M.; O'Hayre, R. P.; Musgrave, C. B.; Stevanović, V. Intrinsic Material Properties Dictating Oxygen Vacancy Formation Energetics in Metal Oxides. *J. Phys. Chem. Lett.* **2015**, *6*, 1948-1953.
- (3) Carey, J. J.; Legesse, M.; Nolan, M. Low Valence Cation Doping of Bulk Cr₂O₃: Charge Compensation and Oxygen Vacancy Formation. *J. Phys. Chem.* C **2016**, *120*, 19160-19174.
- (4) Liu, S.; Lu, Z.; Yuan, C.; Guo, F.; Xiong, R.; Shi, J. Oxygen Vacancies in CrO₂: The Influences to Half Metallicity and the Formation Mode. *IEEE Trans. Magn.* **2016**, *52*, 1-8.
- (5) Zhang, M.; Duan, X.; Gao, Y.; Zhang, S.; Lu, X.; Luo, K.; Ye, J.; Wang, X.; Niu, Q.; Zhang, P. Tuning Oxygen Vacancies in Oxides by Configurational Entropy. *ACS Appl. Mater. Interfaces* **2023**, *15*, 45774-45789.
- (6) Hinuma, Y.; Toyao, T.; Kamachi, T.; Maeno, Z.; Takakusagi, S.; Furukawa, S.; Takigawa, I.; Shimizu, K.-i. Density Functional Theory Calculations of Oxygen Vacancy Formation and Subsequent Molecular Adsorption on Oxide Surfaces. *J. Phys. Chem. C* **2018**, *122*, 29435-29444.
- (7) Chatten, R.; Chadwick, A. V.; Rougier, A.; Lindan, P. J. The oxygen vacancy in crystal phases of WO₃. *J. Phys. Chem. B* **2005**, *109*, 3146-3156.
- (8) Li, D.; Ching, W. Electronic structures and optical properties of low-and high-pressure phases of crystalline B₂O₃. *Phys. Rev. B* **1996**, *54*, 13616.
- (9) Patel, M. K.; Ali, M. A.; Krishnan, S.; Agrawal, V. V.; Al Kheraif, A. A.; Fouad, H.; Ansari, Z.; Ansari, S.; Malhotra, B. D. A label-free photoluminescence genosensor using nanostructured magnesium oxide for cholera detection. *Sci. Rep.* **2015**, *5*, 17384.
- (10) Chen, Y.; Bovet, N.; Trier, F.; Christensen, D.; Qu, F.; Andersen, N. H.; Kasama, T.; Zhang, W.; Giraud, R.; Dufouleur, J. A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al₂O₃/SrTiO₃. *Nat. Commun.* **2013**, *4*, 1371.
- (11) Illarionov, Y. Y.; Knobloch, T.; Jech, M.; Lanza, M.; Akinwande, D.; Vexler, M. I.; Mueller, T.; Lemme, M. C.; Fiori, G.; Schwierz, F. Insulators for 2D nanoelectronics: the gap to bridge. *Nat. Commun.* 2020, *11*, 3385.
- (12) Whited, R.; Flaten, C. J.; Walker, W. Exciton thermoreflectance of MgO and CaO. *Solid State Commun.* **1973**, *13*, 1903-1905.
- (13) Carp, O.; Huisman, C. L.; Reller, A. Photoinduced reactivity of titanium dioxide. *Prog. Solid State Chem.* **2004**, *32*, 33-177.
- (14) Hu, P.; Hu, P.; Vu, T. D.; Li, M.; Wang, S.; Ke, Y.; Zeng, X.; Mai, L.; Long, Y. Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications. *Chem. Rev.* **2023**, *123*, 4353-4415.
- (15) Broomhead, W. T.; Tian, W.; Herrera, J. E.; Chin, Y.-H. C. Kinetic Coupling of Redox and Acid Chemistry in Methanol Partial Oxidation on Vanadium Oxide Catalysts. *ACS Catal.* **2022**, *12*, 11801-11820.
- (16) Ding, C.; Ma, Y.; Lai, X.; Yang, Q.; Xue, P.; Hu, F.; Geng, W. Ordered large-pore mesoporous Cr₂O₃ with ultrathin framework for formaldehyde sensing. ACS Appl. Mater. Interfaces **2017**, 9, 18170-18177.
- (17) Dwivedi, S.; Biswas, S. Enhanced room-temperature magnetoresistance in self-assembled Agcoated multiphasic chromium oxide nanocomposites. *Phys. Chem. Chem. Phys.* **2016**, *18*, 23879-23887.
- (18) Ghosh, S. K. Diversity in the family of manganese oxides at the nanoscale: from fundamentals to applications. *ACS omega* **2020**, *5*, 25493-25504.
- (19) Gupta, S. V.; Kulkarni, V. V.; Ahmaruzzaman, M. Bandgap engineering approach for designing CuO/Mn₃O₄/CeO₂ heterojunction as a novel photocatalyst for AOP-assisted degradation of Malachite green dye. *Sci. Rep.* **2023**, *13*, 3009.
- (20) Ashraf, M.; Khan, I.; Usman, M.; Khan, A.; Shah, S. S.; Khan, A. Z.; Saeed, K.; Yaseen, M.; Ehsan, M. F.; Tahir, M. N. Hematite and magnetite nanostructures for green and sustainable energy harnessing and environmental pollution control: a review. *Chem. Res. Toxicol.* **2019**, *33*, 1292-1311.
- (21) Medhi, R.; Marquez, M. D.; Lee, T. R. Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications. *ACS Appl. Nano Mater.* **2020**, *3*, 6156-6185.
- (22) Moridon, S. N. F.; Salehmin, M. I.; Mohamed, M. A.; Arifin, K.; Minggu, L. J.; Kassim, M. B. Cobalt oxide as photocatalyst for water splitting: Temperature-dependent phase structures. *Int. J. Hydrog. Energy* **2019**, *44*, 25495-25504.
- (23) Chen, J.; Wu, X.; Selloni, A. Electronic structure and bonding properties of cobalt oxide in the spinel structure. *Phys. Rev. B* **2011**, *83*, 245204.
- (24) Shi, J.; Zhang, J.; Yang, L.; Qu, M.; Qi, D. C.; Zhang, K. H. Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices. *Adv. Mater.* **2021**, *33*, 2006230.

- (25) Wong, M. H.; Bierwagen, O.; Kaplar, R. J.; Umezawa, H. Ultrawide-bandgap semiconductors: An overview. *J. Mater. Res.* **2021**, *36*, 4601-4615.
- (26) Dhaka, R.; Yadav, A.; Goyal, A.; Pandey, A.; Gupta, G.; Dutta, S.; Shukla, A. Structural and Optical Properties of Arsenic-Oxide Microcrystals on Gaas Substrate for Photonic Applications. *Available at SSRN 4512709*. Dhaka, Rangeeta and Yadav, Aditya and Goyal, Anshu and Pandey, Akhilesh and Gupta, Govind and Dutta, Shankar and Shukla, A. K., Structural and Optical Properties of Arsenic-Oxide Microcrystals on Gaas Substrate for Photonic Applications. Available at SSRN: http://dx.doi.org/10.2139/ssrn.4512709
- (27) Nemade, K.; Waghuley, S. UV–VIS spectroscopic study of one pot synthesized strontium oxide quantum dots. *Results Phys.* **2013**, *3*, 52-54.
- (28) Tropf, W. J.; Thomas, M. E. *Yttrium oxide* (Y₂O₃) In *Handbook of optical constants of solids*; Elsevier, Amsterdam, 1997.
- (29) Nico, C.; Monteiro, T.; Graça, M. P. Niobium oxides and niobates physical properties: Review and prospects. *Prog. Mater. Sci.* **2016**, *80*, 1-37.
- (30) Patil, R.; Uplane, M.; Patil, P. Structural and optical properties of electrodeposited molybdenum oxide thin films. *Appl. Surf. Sci.* **2006**, *252*, 8050-8056.
- (31) Kumar, A.; Pandey, G. Synthesis, characterization, effect of temperature on band gap energy of molybdenum oxide nano rods and their antibacterial activity. *Am. J. Appl. Ind. Chem.* **2017**, *3*, 38-42.
- (32) Vijayabala, V.; Senthilkumar, N.; Nehru, K.; Karvembu, R. Hydrothermal synthesis and characterization of ruthenium oxide nanosheets using polymer additive for supercapacitor applications. *J. Mater. Sci.: Mater. Electron.* **2018**, *29*, 323-330.
- (33) Scherson, Y. D.; Aboud, S. J.; Wilcox, J.; Cantwell, B. J. Surface structure and reactivity of rhodium oxide. *J. Phys. Chem.* C **2011**, *115*, 11036-11044.
- (34) Rey, E.; Kamal, M.; Miles, R.; Royce, B. The semiconductivity and stability of palladium oxide. *J. Mater. Sci.* **1978**, *13*, 812-816.
- (35) Allen, J. P.; Scanlon, D. O.; Watson, G. W. Electronic structures of silver oxides. *Phys. Rev. B* **2011**, *84*, 115141.
- (36) Jefferson, P. H.; Hatfield, S.; Veal, T. D.; King, P.; McConville, C. F.; Zúñiga–Pérez, J.; Muñoz– Sanjosé, V. Bandgap and effective mass of epitaxial cadmium oxide. *Appl. Phys. Lett.* **2008**, *92*.
- (37) Allen, J. P.; Carey, J. J.; Walsh, A.; Scanlon, D. O.; Watson, G. W. Electronic structures of antimony oxides. *J. Phys. Chem. C* **2013**, *117*, 14759-14769.
- (38) Sundharam, E.; Jeevaraj, A.; Chinnusamy, C. Effect of ultrasonication on the synthesis of barium oxide nanoparticles. *J. Bionanosci.* **2017**, *11*, 310-314.
- (39) Gu, W.; Song, Y.; Liu, J.; Wang, F. Lanthanum-Based Compounds: Electronic Band-Gap-Dependent Electrocatalytic Materials for Oxygen Reduction Reaction. *Chem. Eur. J.* **2017**, *23*, 10126-10132.
- (40) Seifarth, O.; Dabrowski, J.; Zaumseil, P.; Müller, S.; Schmeißer, D.; Müssig, H.-J.; Schroeder, T. On the band gaps and electronic structure of thin single crystalline praseodymium oxide layers on Si (111). J. Vac. Sci. Technol. B:Nanotechnol. Microelectron. 2009, 27, 271-276.
- (41) Pourmortazavi, S. M.; Rahimi-Nasrabadi, M.; Aghazadeh, M.; Ganjali, M. R.; Karimi, M. S.; Norouzi, P. Synthesis, characterization and photocatalytic activity of neodymium carbonate and neodymium oxide nanoparticles. *J. Mol. Struct.* **2017**, *1150*, 411-418.
- (42) Kukli, K.; Aarik, J.; Aidla, A.; Kohan, O.; Uustare, T.; Sammelselg, V. Properties of tantalum oxide thin films grown by atomic layer deposition. *Thin Solid Films* **1995**, *260*, 135-142.
- (43) Hahn, B. P.; May, R. A.; Stevenson, K. J. Electrochemical deposition and characterization of mixedvalent rhenium oxide films prepared from a perrhenate solution. *Langmuir* **2007**, *23*, 10837-10845.
- (44) Seriani, N.; Jin, Z.; Pompe, W.; Ciacchi, L. C. Density functional theory study of platinum oxides: From infinite crystals to nanoscopic particles. *Phys. Rev. B* **2007**, *76*, 155421.
- (45) Moeinian, M.; Akhbari, K. Various methods for synthesis of bulk and nano thallium (III) oxide. *J. Inorg. Organomet. Polym. Mater.* **2016**, *26*, 1-13.
- (46) Zhuravlev, Y. N.; Korabel'nikov, D. V. e. A first principles study of the mechanical, electronic, and vibrational properties of lead oxide. *Phys. Solid State* **2017**, *59*, 2296-2311.
- (47) Ho, C.-H.; Chan, C.-H.; Huang, Y.-S.; Tien, L.-C.; Chao, L.-C. The study of optical band edge property of bismuth oxide nanowires α-Bi₂O₃. Opt. Express 2013, 21, 11965-11972.
- (48) Karelovic, A.; Ruiz, P. CO₂ hydrogenation at low temperature over Rh/γ-Al₂O₃ catalysts: Effect of the metal particle size on catalytic performances and reaction mechanism. *Appl. Catal. B: Environ.* **2012**, *113-114*, 237-249.
- (49) Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C. J.; Berben, P. H.; Meirer, F.; Weckhuysen, B. M. Unravelling structure sensitivity in CO₂ hydrogenation over nickel. *Nat. Catal.* 2018, *1*, 127-134.
- (50) He, S.; Li, C.; Chen, H.; Su, D.; Zhang, B.; Cao, X.; Wang, B.; Wei, M.; Evans, D. G.; Duan, X. A surface defect-promoted Ni nanocatalyst with simultaneously enhanced activity and stability. *Chemistry of Materials* **2013**, *25*, 1040-1046.
- (51) Larmier, K.; Liao, W.-C.; Tada, S.; Lam, E.; Verel, R.; Bansode, A.; Urakawa, A.; Comas-Vives, A.; Copéret, C. CO₂-to-Methanol Hydrogenation on Zirconia-Supported Copper Nanoparticles: Reaction

Intermediates and the Role of the Metal–Support Interface. Angew. Chem. Int. Ed. 2017, 56, 2318-2323.

- (52) Mutz, B.; Gänzler, A. M.; Nachtegaal, M.; Müller, O.; Frahm, R.; Kleist, W.; Grunwaldt, J.-D. Surface oxidation of supported Ni particles and its impact on the catalytic performance during dynamically operated methanation of CO₂. *Catalysts* **2017**, *7*, 279.
- (53) Guo, X.; Traitangwong, A.; Hu, M.; Zuo, C.; Meeyoo, V.; Peng, Z.; Li, C. Carbon dioxide methanation over nickel-based catalysts supported on various mesoporous material. *Energy & Fuels* **2018**, *32*, 3681-3689.
- Melaet, G. r. m.; Ralston, W. T.; Li, C.-S.; Alayoglu, S.; An, K.; Musselwhite, N.; Kalkan, B.; Somorjai, G. A. Evidence of highly active cobalt oxide catalyst for the Fischer–Tropsch synthesis and CO₂ hydrogenation. *J.Am. Chem. Soc.* **2014**, *136*, 2260-2263.
- (55) Bian, L.; Zhang, L.; Xia, R.; Li, Z. Enhanced low-temperature CO₂ methanation activity on plasmaprepared Ni-based catalyst. *J. Nat. Gas Eng.* **2015**, *27*, 1189-1194.
- (56) Shin, H. H.; Lu, L.; Yang, Z.; Kiely, C. J.; McIntosh, S. Cobalt catalysts decorated with platinum atoms supported on barium zirconate provide enhanced activity and selectivity for CO₂ methanation. *ACS Catal.* **2016**, *6*, 2811-2818.
- (57) Kattel, S.; Yan, B.; Chen, J. G.; Liu, P. CO2 hydrogenation on Pt, Pt/SiO₂ and Pt/TiO₂: Importance of synergy between Pt and oxide support. *J. Catal.* **2016**, *343*, 115-126.
- (58) Dreyer, J. A. H.; Li, P.; Zhang, L.; Beh, G. K.; Zhang, R.; Sit, P. H. L.; Teoh, W. Y. Influence of the oxide support reducibility on the CO₂ methanation over Ru-based catalysts. *Appl. Catal. B: Environ.* **2017**, *219*, 715-726.
- (59) Karelovic, A.; Ruiz, P. Mechanistic study of low temperature CO₂ methanation over Rh/TiO₂ catalysts. *J. Catal.* **2013**, *301*, 141-153.
- (60) Li, M.; Amari, H.; van Veen, A. C. Metal-oxide interaction enhanced CO₂ activation in methanation over ceria supported nickel nanocrystallites. *Appl. Catal. B: Environ.* **2018**, 239, 27-35.
- (61) Panagiotopoulou, P. Methanation of CO₂ over alkali-promoted Ru/TiO₂ catalysts: II. Effect of alkali additives on the reaction pathway. *Appl. Catal. B: Environ.* **2018**, 236, 162-170.
- (62) Zhang, Y.; Yan, W.; Qi, H.; Su, X.; Su, Y.; Liu, X.; Li, L.; Yang, X.; Huang, Y.; Zhang, T. Strong Metal– Support Interaction of Ru on TiO₂ Derived from the Co-Reduction Mechanism of Ru x Ti_{1-x}O₂ Interphase. ACS Catal. 2022, 12, 1697-1705.
- (63) Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO₂ reduction selectivity. *J.Am. Chem. Soc.* **2015**, *137*, 3076-3084.
- (64) Jia, X.; Zhang, X.; Rui, N.; Hu, X.; Liu, C.-j. Structural effect of Ni/ZrO₂ catalyst on CO₂ methanation with enhanced activity. *Appl. Catal. B: Environ.* **2019**, *244*, 159-169.
- (65) Zhang, C.; Wang, L.; Etim, U. J.; Song, Y.; Gazit, O. M.; Zhong, Z. Oxygen vacancies in Cu/TiO₂ boost strong metal-support interaction and CO₂ hydrogenation to methanol. *J. Catal.* **2022**, *413*, 284-296.
- (66) Zhu, J.; Zhang, G.; Li, W.; Zhang, X.; Ding, F.; Song, C.; Guo, X. Deconvolution of the particle size effect on CO₂ hydrogenation over iron-based catalysts. *ACS Catal.* **2020**, *10*, 7424-7433.
- (67) Chen, Z.; Liang, L.; Yuan, H.; Liu, H.; Wu, P.; Fu, M.; Wu, J.; Chen, P.; Qiu, Y.; Ye, D. Reciprocal regulation between support defects and strong metal-support interactions for highly efficient reverse water gas shift reaction over Pt/TiO₂ nanosheets catalysts. *Appl. Catal. B: Environ.* **2021**, *298*, 120507.
- (68) Chen, X.; Su, X.; Su, H.-Y.; Liu, X.; Miao, S.; Zhao, Y.; Sun, K.; Huang, Y.; Zhang, T. Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO₂ to CO conversion. *ACS Catal.* **2017**, *7*, 4613-4620.