ARTICLE

Supplementary Information

In all experiments the catalysts were first heated at (400 °C for DR UV-Vis and 550 °C for SO_2 uptake and catalytic testing) in 10% O_2/N_2 flow and left at this temperature for 1 hour. The following steps are described for the four different procedures:

- a) Cooling in 10% O₂/N₂ flow at 200 °C, resulting in the formation of framework coordinated Cu^{II} sites (fw-Cu^{II}).
- b) $1\% H_2/N_2$ flow at 400 °C for 1 hour, followed by cooling in the same atmosphere to 200 °C, resulting in the formation of framework coordinated Cu^I sites (fw-Cu^I).
- c) Cooling in $10\% O_2/N_2$ flow at 200 °C, followed by 20 minutes N_2 purge and subsequent exposure to NO/NH₃ (500 ppm/600 ppm, rest N_2), resulting in the formation of 'mobile' $[Cu^l(NH_3)_2]^+$ complex.
- d) The same procedure as in c), followed by N_2 purge and exposure to $10\%O_2/N_2$ for 30 min, resulting in the formation of $[Cu^{II}_2(NH_3)_4O_2]^{2+}$ complexes.

Then subsequently the catalysts were exposed to 50 ppm SO_2/N_2 followed by the DR UV-Vis experiments and 100 ppm SO_2/N_2 for SO_2 uptake and catalytic testing measurements at 200 °C.

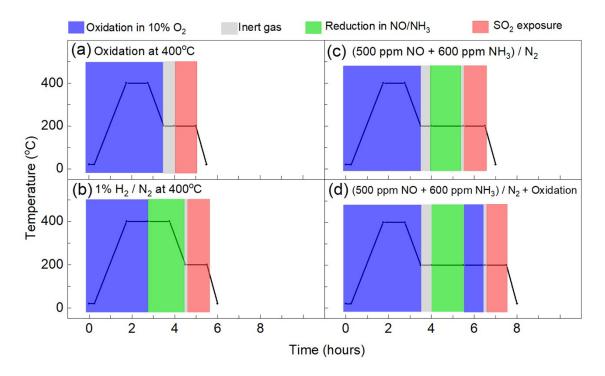


Fig. S 1 Schematic representation of the four procedures carried out to obtain (a) fw-Cu^{II}, (b) fw-Cu^{II}, (c) $[Cu^I(NH_3)_2]^+$ complexes and (d) $[Cu^{II}_2(NH_3)_4O_2]^{2+}$ complexes, and subsequent exposure to SO_2/N_2 .

ARTICLE Journal Name

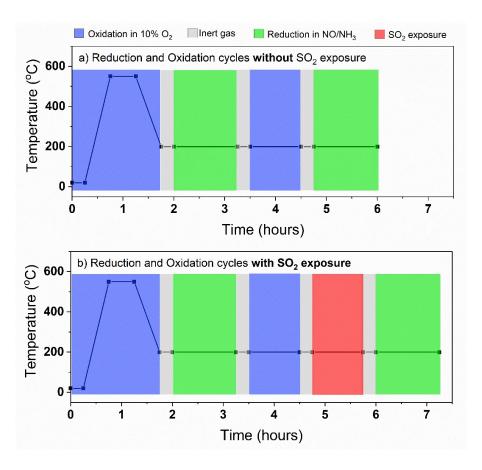
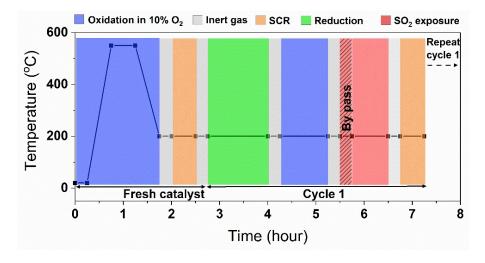
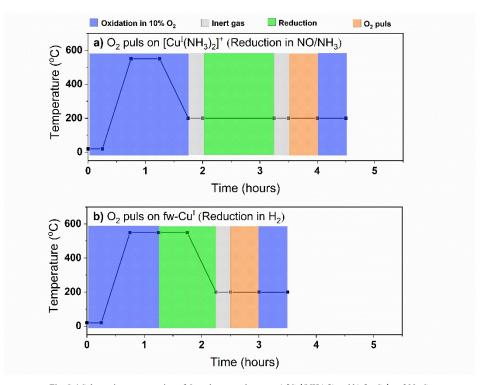




Fig. S 2 Schematic representation of oxidation and reduction cycles a) without SO_2 , and b) with SO_2 at 200 °C.

 $Fig.\,S\,3\,S chematic \ representation \ of \ repeated \ SO_2 \ exposure \ procedure \ to \ measure \ SO_2 \ uptake \ during \ SO_2 \ exposure \ and \ deactivation.$

Journal Name ARTICLE

 $Fig. \ S \ 4 \ Schematic \ representation \ of \ O_2 \ pulse \ procedures \ on \ a) \ [Cu^I(NH_3)_2]^+ \ and \ b) \ fw-Cu^I \ \ at \ 200 \ ^oC.$