Electronic supplementary information

MnFe₂O₄/BiVO₄ film photoanode with heterojunction, co-catalytic and photothermal effects for effective solar water oxidation

Guoqiang Shen, ^a Haijiao Lu ^b * and Hao Chen ^a *

^aHunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

^bNanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia

*Email:

haijiao.lu@uq.edu.au (Haijiao Lu)

chenhaoch@hnu.edu.cn (Hao Chen)

Fig. S1 SEM image of MnFe₂O₄ sample.

Fig. S2 LSV curves of the $MnFe_2O_4/BiVO_4$ films in 0.1 M NaPi under AM 1.5G irradiation. The $MnFe_2O_4/BiVO_4$ films were prepared using different $MnFe_2O_4$ -containing suspensions on $BiVO_4$ film.

Fig. S3 The photocurrent response of $MnFe_2O_4$ film in 0.1 M NaPi at 1.23 V vs. RHE under AM 1.5G irradiation.

Fig. S4 (a) The curves of O_2 generation *vs*. reaction time, and (b) faradic efficiency of oxygen evolution reaction on BiVO₄ and MnFe₂O₄/BiVO₄ film photoelectrode in 0.1 M NaPi under AM 1.5G irradiation at 1.23 V *vs*. RHE.

Photoanode	Testing electrolyte	J (mA cm ⁻²) At 1.23 V vs. RHE	Year of publication	Ref.
BiVO ₄ /DLC	0.5 M phosphate buffer	2.39	2023	1
BiVO ₄ /ZnCoMOF	0.5 M Na ₂ SO ₄ solution	3.08	2023	2
BiVO ₄ /FeOOH	0.2 M Na ₂ SO ₄	2.02	2023	3
CoOx/C/BiVO ₄	0.1 M NaPi buffer	1.47	2023	4
BiVO4-MOF-N ₂	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4$	2.32	2023	5
MnFe ₂ O ₄ /BiVO ₄	0.1 M NaPi buffer	2.58	This work	

Table S1 The activity comparison of the present $MnFe_2O_4/BiVO_4$ photoanode to the $BiVO_4$ -based photoanodes in recent reports.

Fig. S5 SEM image of $MnFe_2O_4/BiVO_4$ film photoanode (a) before and (b) after 2 h of testing in 0.1 M NaPi at 1.23 *vs*. RHE under AM 1.5G irradiation.

Fig. S6 The $\Delta I \sim v$ plots used for the calculation of double-layer capacitance (C_{dl}) for

(a) FTO, (b) $BiVO_4$ and (c) $MnFe_2O_4/BiVO_4$ electrode at 0.85 V vs. RHE.

Fig. S7 (a) LSV curves of $MnFe_2O_4$ film electrode in 0.1 M NaPi in dark condition after different AM 1.5G irradiation times. (b) LSV curves of $MnFe_2O_4/BiVO_4$ film in 0.1 M NaPi under/without AM 1.5G irradiation, the temperature of 0.1 M NaPi was controlled at different temperatures.

Fig. S8 The OCP of BiVO₄ and MnFe₂O₄/BiVO₄ film photoanodes in 0.1 M NaPi under 1.5G illumination and in dark, respectively.

References

- 1. Yuan *et al.*, A novel BiVO₄/DLC heterojunction for efficient photoelectrochemical water splitting, Chem. Eng. J. 2023, 459, 141637.
- Kubendhiran *et al.*, Enhanced photoelectrochemical water oxidation on BiVO₄ by addition of ZnCo-MOFs as effective hole transfer co-catalyst, Int. J. Hydrog. Energy 2023, 48, 101-112.
- 3. Yang *et al.*, Manipulating the surface states of BiVO₄ through electrochemical reduction for enhanced PEC water oxidation, Nanoscale 2023, 15, 4536-4545.
- Wang *et al.*, Promoting photoelectrochemical water oxidation of BiVO₄ photoanode via Co-MOF-derived heterostructural cocatalyst, Appl. Surf. Sci. 2023, 619, 156710.
- He *et al.*, Photothermal-enhanced solar water oxidation on NiO/amorphous carbon/BiVO₄ and CoOx/amorphous carbon/BiVO₄ photoanodes, Catal. Sci. Technol. 2023, 13, 5776-5784.