Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Construction of intimate Lewis acid and basic sites on Al₂O₃-NC composite catalyst with enhanced performance in transfer hydrogenation of cinnamaldehyde

Peng Zhang,^a Lele Bai,^a Yao Wang,^{ab*} Zhichao Sun,^{ab} Ying-Ya Liu,^{ab} and Anjie Wang,^{ab*}

 ^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
^b Liaoning Key Laboratory of Petrochemical Technology and Equipments, Dalian University of Technology, Dalian 116024, PR China

* Corresponding authors

Profs. Anjie Wang and Yao Wang

E-mail: ajwang@dlut.edu.cn; wangyao@dlut.edu.cn

Fig. S1 GC chromatograms of (a) feed and (b) product of CAL selective hydrogenation. Reaction conditions: 0.1 g 10-Al₂O₃-NC, 2 mmol CAL, 30 mL isopropanol, 160 °C, 0.5 MPa N₂, and 3 h.

Fig. S2 TEM images of x-Al₂O₃-NC catalysts: (a) 4-Al₂O₃-NC, (b) 10-Al₂O₃-NC, (c) 16-Al₂O₃-NC.

Fig. S3 (a) CO₂-TPD profiles and (b) NH₃-TPD profiles of x-Al₂O₃-NC catalysts and 10-Al₂O₃-NC-A

Fig. S4 (a) CO₂-TPD profiles and (b) NH₃-TPD profiles of catalysts treated at different temperatures.

Fig. S5 XPS spectra of 10-Al₂O₃-NC catalysts of N 1s treated at different temperatures.

Table S1 Nitrogen con	ncentration a	nd relative	contents of	of nitrogen	functional	groups	of 10-Al ₂	O ₃ -NC
treated at different tem	peratures							

Catalvet	N $(at 0/)$	N content (%)			
Catalyst	14 (at. 70)	graphitic-N pyrro		pyridinic-N	
10-Al ₂ O ₃ -NC (450)	3.36	31	49	20	
10-Al ₂ O ₃ -NC (500)	3.16	33	42	25	
10-Al ₂ O ₃ -NC (550)	3.04	40	32	28	
10-Al ₂ O ₃ -NC (600)	2.42	45	25	31	

Fig. S6 CO₂-TPD profiles (a) and NH₃-TPD profiles of 10-Al₂O₃-NC before and after hydrogen treatment at 550 °C for different times.

Fig. S7 XPS spectra in the regions of N 1s of 10-Al₂O₃-NC catalysts before and after hydrogen treatment at 550 °C for different times.

Table S2 Nitrogen concentration and relative contents of nitrogen functional groups of 10-Al₂O₃-NCbefore and after hydrogen treatment at 550 °C for different times

Catalvet	N (at. %)	N content (%)			
Catalyst		graphitic-N	pyrrolic-N	pyridinic-N	
10-Al ₂ O ₃ -NC (0h)	3.07	40	32	28	
10-Al ₂ O ₃ -NC (1h)	2.86	37	37	25	
10-Al ₂ O ₃ -NC (2h)	2.04	41	35	24	
10-Al ₂ O ₃ -NC (3h)	1.83	49	33	18	

Entry	Solvents	Conversion/%	COL selectivity/%
1	Methanol	41.7	77.1
2	Ethanol	69.4	94.9
3	Propanol	55.8	97.4
4	Isopropanol	99.0	98.9
5	Butanol	37.3	97.3

Table S3 Comparison of the catalytic performance of 10-Al₂O₃-NC in different solvents

Reaction conditions: 2 mmol CAL, 0.1 g 10-Al₂O₃-NC, 30 mL isopropanol, 160 °C, and 3 h.