Supporting Information

Catalytic Deoxygenation of Stearic Acid into Olefins over Pt Catalysts Supported on MOF-derived Metal Oxides

Kok Bing Tan,^{a,c‡} Yiping Liu,^{a,c‡} Youting Wang,^{a,c} Sajid Ali,^{a,c} Wendong Wang,^{a,c} Jingru Li,^a Longmei Shang,^{a,c*} Xing Yan,^a Xiaodong Zhang,^{b,*} and Guowu Zhan^{a,c*}

^a Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China

^b College of Marine Equipment and Mechanical Engineering, Jimei University, 185 Yinjiang Road, Xiamen, 361021, Fujian, China

^c Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China

*Corresponding author email: gwzhan@hqu.edu.cn (G. Zhan), shanglm@hqu.edu.cn (L. Shang) and xd_zhang77@aliyun.com (X. Zhang)

[‡] These two authors contributed equally to this work.

Number of pages: 9 Number of figures: 6 Number of tables: 1

Supplementary Figures

Figure S1. N ₂ physisorption isotherms of (a) ZrO ₂ , Pt/ZrO ₂ , and (b) Fe ₂ O ₃ samples3
Figure S2. Thermogravimetric analysis (TGA) for UIO-66, Ce-BTC, and MIL-88B(Fe) metal-organic
framework4
Figure S3. TEM image of (a) Pt/CeO ₂ , and(b) Pt/ZrO ₂ . Inset of (a, b) show the histogram of the particle
size distribution of Pt nanoparticles5
Figure S4. XPS data for Pt/ZrO ₂ in different regions: (a) Zr 3d and (b) Pt 4f6
Figure S5. XPS data for Pt/Fe ₂ O ₃ in different regions: (a) Fe 2 <i>p</i> , (b) Fe 3 <i>p</i> , and (c) Pt 4 <i>f</i> 7
Figure S6. (a) TEM images of Pt/CeO ₂ before reaction, (b-c) EDX elemental maps of Pt/CeO ₂ before
reaction, (d) TEM images of Pt/CeO2 after reaction, and (e-f) EDX elemental maps of Pt/CeO2
after reaction

Supplementary Table

Figure S1. N_2 physisorption isotherms of (a) ZrO_2 , Pt/ZrO_2 , and (b) Fe_2O_3 samples.

Figure S2. Thermogravimetric analysis (TGA) for UIO-66, Ce-BTC, and MIL-88B(Fe) metal-organic framework.

Figure S3. TEM image of (a) Pt/CeO₂, and(b) Pt/ZrO₂. Inset of (a, b) show the histogram of the particle size distribution of Pt nanoparticles

Figure S4. XPS data for Pt/ZrO_2 in different regions: (a) Zr 3d and (b) Pt 4f.

Figure S5. XPS data for Pt/Fe₂O₃ in different regions: (a) Fe 2*p*, (b) Fe 3*p*, and (c) Pt 4*f*.

Figure S6. (a) TEM images of Pt/CeO_2 before reaction, (b-c) EDX elemental maps of Pt/CeO_2 before reaction, (d) TEM images of Pt/CeO_2 after reaction, and (e-f) EDX elemental maps of Pt/CeO_2 after reaction.

Sample	BET Surface area (m²/g)	Pore diameter (nm)	pore volume (cm²/g)	Pt wt%ª	
Ce-BTC	21.1	4.5	0.09	-	
CeO ₂	59.5	6.54	0.19	-	
Pt/CeO ₂	53	3.41	0.15	3.2	
UIO-66	1456	0.78	0.58	-	
ZrO ₂	6.1	4.9	0.05	-	
Pt/ZrO ₂	7.1	3.82	0.06	1.4	
MIL-88(B) Fe	42.7	4.6	0.17	-	
Fe ₂ O ₃	18.6	3.46	0.04	-	
Pt/Fe ₂ O ₃	25	3.06	0.22	2.6	

 Table S1. BET-specific surface area, pore diameter, and Pt loading amount of various samples.

Note: ^a detected based on ICP- OES.