Supplementary Information

Photocatalytic H₂O₂ Production Over Photocatalysts Prepared By Phosphine-protected Au₁₀₁ Nanoclusters on WO₃

Imran Hakim Abd Rahim,¹ Xuan Yin Lee,¹ Abdulrahman S. Alotabi,^{2,3} D. J. Osborn,⁴ Sunita Gautam Adhikari,² Gunther G. Andersson,² Gregory F. Metha,⁴ Rohul H. Adnan¹*

- 1. Nanoscience Lab, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
- 2. Flinders Institute for NanoScale Science and Technology, Flinders University, Adelaide, SA 5042, Australia
- 3. Department of Physics, Faculty of Science and Arts in Baljurashi, Albaha University, Baljurashi 65655, Saudi Arabia
- 4. Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia

*Corresponding author: rohuladnan@gmail.com

Fig. S1. Emission profile of 370 nm and 405 nm LED lamps used in this work

Fig. S2. HRTEM image of pristine Au_{101} clusters dissolved in DCM.

Fig. S3. C1s spectra of a) uncalcined, and b) calcined Au₁₀₁/WO₃ photocatalysts.

	Element	Peak position WO:		Au ₁₀₁ /WO ₃	Au ₁₀₁ /WO ₃
		(± 0.2eV)			calcined
Before photocatalytic reactior	C 1s	P1 - (285)	13.9	20.2	14.3
		P2 - (286.2)	5.5	5.4	6.0
		P3 - (289.2)	1.1	1.3	0.9
	0 1s	P1 - (530.5)	52.5	49.5	56.3
		P2 - (531.5)	11.0	7.2	7.3
	Au 4f _{7/2}	P1 - (84.2)	-	0.36	0.24
	P 2p _{3/2}	P1 - 131.8 (Au-PPh ₃) - 0.22		0.22	-
		P2 - 132.7 (0= PPh ₃)	-	-	0.14
	W 4f _{7/2}	P1 (35.7-35.9)	16.0	14.9	14.9
			Au ₁₀₁ /WO ₃	Au ₁₀₁ /WO ₃	Au ₁₀₁ /WO ₃
			Au ₁₀₁ /WO ₃ 1h	Au ₁₀₁ /WO ₃ calc. 1h	Au ₁₀₁ /WO ₃ calc. 3h
		P1 - (285)	Au ₁₀₁ /WO ₃ 1h 9.7	Au ₁₀₁ /WO ₃ calc. 1h 14.1	Au ₁₀₁ /WO ₃ calc. 3h 10.2
Afte	C 1s	P1 - (285) P2 - (286.2)	Au ₁₀₁ /WO ₃ 1h 9.7 14.4	Au ₁₀₁ /WO ₃ calc. 1h 14.1 6.3	Au ₁₀₁ /WO ₃ calc. 3h 10.2 6.9
After ph	C 1s	P1 - (285) P2 - (286.2) P3 - (289.2)	Au ₁₀₁ /WO ₃ 1h 9.7 14.4 1.4	Au ₁₀₁ /WO ₃ calc. 1h 14.1 6.3 1.2	Au ₁₀₁ /WO ₃ calc. 3h 10.2 6.9 1.4
After photoc	C 1s	P1 - (285) P2 - (286.2) P3 - (289.2) P1 - (530.5)	Au ₁₀₁ /WO ₃ 1h 9.7 14.4 1.4 47.0	Au ₁₀₁ /WO ₃ calc. 1h 14.1 6.3 1.2 51.5	Au ₁₀₁ /WO ₃ calc. 3h 10.2 6.9 1.4 56.6
After photocatal	C 1s O 1s	P1 - (285) P2 - (286.2) P3 - (289.2) P1 - (530.5) P2 - (531.5)	Au ₁₀₁ /WO ₃ 1h 9.7 14.4 1.4 47.0 13.9	Au ₁₀₁ /WO ₃ calc. 1h 14.1 6.3 1.2 51.5 11.8	Au ₁₀₁ /WO ₃ calc. 3h 10.2 6.9 1.4 56.6 10.1
After photocatalytic	C 1s O 1s Au 4f _{7/2}	P1 - (285) P2 - (286.2) P3 - (289.2) P1 - (530.5) P2 - (531.5) P1 - (84.2)	Au ₁₀₁ /WO ₃ 1h 9.7 14.4 1.4 47.0 13.9 0.26	Au ₁₀₁ /WO ₃ calc. 1h 14.1 6.3 1.2 51.5 11.8 0.17	Au ₁₀₁ /WO ₃ calc. 3h 10.2 6.9 1.4 56.6 10.1 0.16
After photocatalytic reac	C 1s O 1s Au 4f _{7/2} P 2p _{3/2}	P1 - (285) P2 - (286.2) P3 - (289.2) P1 - (530.5) P2 - (531.5) P1 - (84.2) P1 - 131.8 (PPh ₃)	Au ₁₀₁ /WO ₃ 1h 9.7 14.4 1.4 47.0 13.9 0.26 0	Au ₁₀₁ /WO ₃ calc. 1h 14.1 6.3 1.2 51.5 11.8 0.17 0	Au ₁₀₁ /WO ₃ calc. 3h 10.2 6.9 1.4 56.6 10.1 0.16 0
After photocatalytic reaction	C 1s O 1s Au 4f _{7/2} P 2p _{3/2}	P1 - (285) P2 - (286.2) P3 - (289.2) P1 - (530.5) P2 - (531.5) P1 - (84.2) P1 - 131.8 (PPh ₃) P2 - 132.7 (O= PPh ₃)	Au ₁₀₁ /WO ₃ 1h 9.7 14.4 1.4 47.0 13.9 0.26 0 0	Au ₁₀₁ /WO ₃ calc. 1h 14.1 6.3 1.2 51.5 11.8 0.17 0 0	Au ₁₀₁ /WO ₃ calc. 3h 10.2 6.9 1.4 56.6 10.1 0.16 0 0

Table S1. Peak element and percentage composition of WO3-based photocatalysts

Fig. S4. FTIR spectra of pure Au₁₀₁ clusters, WO₃, uncalcined and calcined Au₁₀₁/WO₃.

Fig. S5. Calibration curve of standard H_2O_2 solutions monitored at 454 nm by UV-vis spectroscopy.

Fig. S6. Curve fitting using GNU Plot software for a) Sample 1 (Au₁₀₁/WO₃), and b) Sample 2 (Au₁₀₁/WO₃-calcined)

Photocatalyst	Light source	Reaction mixture	[H ₂ O ₂] (mM)	Time (h)	Ref.
		4% EtOH/H ₂ O	2.05	1	This
calcined	365 nm	water	0.31	0.5	work
0.25% Au/TiO ₂	>300 nm	4% EtOH/H ₂ O	~7	24	1
0.88% Au/TiO ₂ - CO ₃ ²⁻	>430 nm	4% HCOOH/H2O	1 mM	1	2
0.61% Au/TiO ₂	>320 nm	4% MeOH/H₂O, pH 9	1.31	10	3
	>420 nm	4% MeOH/H ₂ O	0.54	5	4
0.34% AU/ WU3		water	0.18	5	

 Table S2. Comparison of photocatalytic activity in H₂O₂ production of Au-based photocatalysts

References

- Teranishi, M.; Naya, S.; Tada, H. In Situ Liquid Phase Synthesis of Hydrogen Peroxide from Molecular Oxygen Using Gold Nanoparticle-Loaded Titanium(IV) Dioxide Photocatalyst. J. Am. Chem. Soc. 2010, 132 (23), 7850–7851.
- 2. Naya, S.; Niwa, T.; Kume, T.; Tada, H. Visible-Light-Induced Electron Transport from Small to Large Nanoparticles in Bimodal Gold Nanoparticle-Loaded Titanium(IV) Oxide. Angewandte Chemie International Edition 2014, 53 (28), 7305–7309.
- Xiong, X.; Zhang, X.; Liu, S.; Zhao, J.; Xu, Y. Sustained Production of H2O2 in Alkaline Water Solution Using Borate and Phosphate-Modified Au/TiO2 Photocatalysts. Photochemical & Photobiological Sciences 2018, 17 (8), 1018–1022.
- 4. Wang, Y.; Wang, Y.; Zhao, J.; Chen, M.; Huang, X.; Xu, Y. Efficient Production of H2O2 on Au/WO3 under Visible Light and the Influencing Factors. Applied Catalysis B: Environmental 2021, 284, 119691