Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting information

Heteroatom-Doped Carbon Nanomaterials as Potential Heterogeneous Fenton

Reaction Catalysts

Haobin Tan,^a Xiuli Hou,^{b,*} Chen Zhou,^a Shengbo Wang,^a Qiang Liu,^c Zhenhui Xu,^c

Peng Zhang,^{a,*}

^a Key Laboratory for Water Quality and Conservation of the Pearl River Delta,

Ministry of Education, Institute of Environmental Research at Greater Bay,

Guangzhou University, Guangzhou 510006, China

^b School of Physics and Materials Science, Guangzhou University, Guangzhou

510006, China

^c Houma Special Industry Factory, Houma 043000, China

*Corresponding author

*E-mail: xiulihou@foxmail.com, pengzhang85@foxmail.com

Computational methods

Spin-unrestricted DFT calculations were performed based on the DMol³ code.^{1,2} The exchange-correlation effect was described by the Generalized Gradient Approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) functional.³ All-Electron Relativistic (AER) approach was implemented for core electrons treatment and Double Numerical Plus Polarization (DNP) was employed as the basis set.⁴ The dispersion correction within the Grimme scheme was employed to describe the van der Waals (vdW) interaction.⁵ The convergence tolerances of energy, maximum force, and displacement during the geometry optimization were 1.0×10⁻⁵ Ha, 2.0×10⁻³ Ha/Å, and 5.0×10⁻³ Å, respectively. The smearing value was set as 0.005 Ha to accelerate the energy convergence. The conductor-like screening model (COSMO) was used to describe the water solvent environment, and the dielectric constant was set as 78.54 for the H₂O solvent.⁶ The activation energies for the elemental step were determined by the LST/QST method. The adsorption energy (E_{ads}) was calculated as $E_{ads} = E_{sys}$ – $E_{\rm cat} - E_{\rm mol}$, where $E_{\rm sys}$, $E_{\rm cat}$, and $E_{\rm mol}$ represent the total energies of the adsorption system, the catalyst, and the adsorbate molecule, respectively. In order to eliminate interaction between neighboring periodic cells, the single-layer graphene was modeled by periodically repeated $p(4 \times 4)$ unit cells with a 15 Å vacuum layer. For the same purpose, the CNT was built in an orthorhombic lattice with axis lengths of 22 Å in the a and b directions, while the nanoribbons were constructed with lattice parameters of 25 Å and 15 Å along the a and c directions, respectively.

Fig. S1. The atomic structures of heteroatom doped carbon nanomaterials, including graphene (a), CNTs (b), armchair (c) and zigzag (d) carbon nanoribbon.

Fig. S2. The reaction energy diagrams of H_2O_2 dissociation on CNT-B (a), Arm-B (b) and Zig-B (c).

Fig. S3. The reaction energy diagrams of H_2O_2 dissociation on Gra-N (a), CNT-N (b), Arm-N (c) and Zig-N (d).

Fig. S4. The reaction energy diagrams of H_2O_2 dissociation on Gra-O (a), CNT-O (b), Arm-O (c) and Zig-O (d).

Fig. S5. The reaction energy diagrams of H_2O_2 dissociation on Gra-P (a), CNT-P (b), Arm-P (c) and Zig-P (d).

Fig. S6. The reaction energy diagrams of H_2O_2 dissociation on Gra-S (a), CNT-S (b), Arm-S (c) and Zig-S (d).

Fig. S7. Partial density of states (PDOS) of O adsorbed on N-doped carbon nanomaterials: (a) Gra-N, (b) CNT-N, (c) Arm-N, and (d) Zig-N.

Fig. S8. Top and side views of reaction intermediates adsorbed on B-doped graphene (a), CNTs (b), armchair (c) and zigzag (d) carbon nanoribbons.

Fig. S9. Top and side views of reaction intermediates adsorbed on N-doped graphene (a), CNTs (b), armchair (c) and zigzag (d) carbon nanoribbons.

Fig. S10. Top and side views of reaction intermediates adsorbed on O-doped graphene (a), CNTs (b), armchair (c) and zigzag (d) carbon nanoribbons.

Fig. S11. Top and side views of reaction intermediates adsorbed on P-doped graphene (a), CNTs (b), armchair (c) and zigzag (d) carbon nanoribbons.

Fig. S12. Top and side views of reaction intermediates adsorbed on S-doped graphene (a), CNTs (b), armchair (c) and zigzag (d) carbon nanoribbons.

Fig. S13. The atomic index of heteroatom doped carbon nanomaterials.

were shown in Figs. S8-S12.									
		0	OH	H_2O_2	H ₂ O	O ₂			
В	graphene	-3.761	-2.194	-0.255	-0.199	0.337			
	CNT	-5.074	-2.646	-0.278	-0.171	-0.048			
	Armchair	-4.599	-2.534	-0.415	-0.358	0.184			
	Zigzag	-4.590	-2.554	-0.277	-0.241	0.055			
N	graphene	-3.234	-2.072	-0.218	-0.151	0.116			
	CNT	-4.021	-2.770	-0.182	-0.137	-0.010			
	Armchair	-3.886	-2.456	-0.202	-0.160	0.072			
	Zigzag	-4.489	-2.795	-0.201	-0.155	-1.116			
0	graphene	-6.499	-3.940	-0.240	-0.148	0.102			
	CNT	-6.931	-4.548	-0.211	-0.134	-1.714			
	Armchair	-7.429	-5.237	-0.342	-0.285	-0.110			
	Zigzag	-7.832	-4.901	-0.431	-0.198	-2.996			
Р	graphene	-6.013	-3.849	-0.223	-0.165	-1.186			
	CNT	-5.967	-3.858	-0.250	-0.188	-1.195			
	Armchair	-6.155	-3.684	-0.271	-0.205	-1.220			
	Zigzag	-5.880	-3.598	-0.233	-0.228	-1.129			
S	graphene	-5.093	-2.671	-0.228	-0.235	0.149			
	CNT	-4.911	-2.213	-0.236	-0.233	-0.082			
	Armchair	-5.874	-3.658	-0.236	-0.188	-0.040			
	Zigzag	-6.559	-3.981	-0.445	-0.320	-0.115			

Table S1. Adsorption energies of different species on heteroatom doped carbon nanomaterials. All results were in unit of eV. The corresponding adsorption structures

corresponding dronne index was shown in Fig. 515.								
		heteroatoms	C1	C2	C3			
	0	-0.583	0.238	0.238	0.228			
	Ν	-0.452	0.186	0.185	0.177			
graphene	S	-0.054	-0.06	-0.061	-0.068			
	Р	0.618	-0.331	-0.333	-0.334			
_	В	0.087	-0.075	-0.079	-0.079			
	0	-0.527	0.278	0.241	0.106			
	Ν	-0.389	0.201	0.181	0.064			
Armchair	S	-0.024	-0.117	-0.077	-0.024			
	Р	0.589	-0.305	-0.338	-0.381			
	В	0.085	-0.069	-0.108	-0.21			
	0	-0.454	0.275	0.061	0.061			
	Ν	-0.295	0.178	0.005	0.005			
Zigzag	S	-0.056	-0.051	-0.159	-0.159			
	Р	0.980	-0.411	-0.485	-0.485			
	В	0.016	-0.116	-0.157	-0.157			
	0	-0.517	0.207	0.160	0.160			
	Ν	-0.434	0.203	0.181	0.181			
CNTs	S	-0.019	-0.041	-0.075	-0.075			
	Р	0.619	-0.325	-0.331	-0.331			
	В	0.140	-0.123	-0.095	-0.095			

Table S2. The Mulliken charges of the heteroatoms and their adjacent C atoms. The

corresponding atomic index was shown in Fig. S13.

Reference

- 1 B. Delley, J. Chem. Phys., 1990, 92, 508-517.
- 2 B. Delley, J. Chem. Phys., 2000, 113, 7756-7764.
- 3 J.P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 4 D.D. Koelling and B.N. Harmon, J. Phys. C: Solid State Phys., 1977, 10, 3107-3114.
- 5 S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.
- 6 B. Delley, Mol. Simul., 2006, **32**, 117-123.