Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Facilitating active NiOOH formation via Mo doping towards highefficiency oxygen evolution

Liuqing Wang^{a,b,c}, Jinsheng Li^{a,c}, Qinglei Meng^{a,c}, Meiling Xiao^{*a,b,c}, Changpeng Liu^{a,b,c}, Wei Xing^{*a,b,c} and Jianbing Zhu^{*a,b,c}

a. State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

b. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.

c. Jilin Province Key Laboratory of Low Carbon Chemical Power Sources, Changchun 130022, China.

Fig. S1 SEM images of NiFe-LDH, NiFeMo-1, NiFeMo-2 and NiFeMo-3.

Fig. S2 TEM images of (a-c) NiFe-LDH and (c-e) NiFeMo-2.

Figure S3. (a) HAADF-STEM image and (b, c) element mapping analysis for NiFe-LDH.

Fig. S4 (a) HAADF-STEM image and (b, c) element mapping analysis for NiFeMo-2

Fig. S5 FTIR spectra of NiFe-LDH, NiFeMo-1, NiFeMo-2 and NiFeMo-3.

Fig. S6 SEM images of NiFeMo-2 catalyst (a, b) before stability test and (c, d) after stability test.

Fig. S7 (a) XPS survey and (b-e) High-resolution XPS spectra: (b) Ni 2p, (c) Fe 2p, (d) Mo 3d, and (e) O 1s of NiFeMo-1 catalyst.

Fig S8 (a) XPS survey and (b) Mo 3d XPS spectra of of NiFeMo-2 catalyst.

Fig. S9 (a) XPS survey and (b-e) High-resolution XPS spectra: (b) Ni 2p, (c) Fe 2p, (d) Mo 3d, and (e) O 1s of NiFeMo-3 catalyst.

Fig. S10 positive scan LSV curves of NiFe-LDH, NiFeMo-1, NiFeMo-2 and NiFeMo-3

Fig. S11 ECSA curves of (a) NiFe-LDH, (b) NiFeMo-1, (c) NiFeMo-2 and (d) NiFeMo-3.

Fig. S12 (a-d) Nyquist plots of (a) NiFe-LDH, (b) NiFeMo-1, (c) NiFeMo-2 and (d) NiFeMo-3 at different potentials.

Sample	R_s/Ω	$R1(R_{ct})/\Omega$	CPE1/F	R2/Ω	CPE2/F
NiFe-LDH	6.561	243.8	4.007×10 ⁻³	12.09	3.042×10-2
NiFeMo-1	8.143	18.66	8.886×10-3	1.628	3.572×10-4
NiFeMo-2	6.881	9.07	5.927×10 ⁻³	0.4694	7.199×10 ⁻⁵
NiFeMo-3	6.497	11.6	2.894×10-3	2.476	5.529×10-4

Table S1 Fitted equivalent circuit model parameters of the NiFe-LDH, NiFeMo-1, NiFeMo-2 and NiFeMo-3

Table S2 Comparison of the overpotentials (η_{10}) and Tafel slope of NiFeMo-2 with other transition metal-based OER
catalysts

Catalysts	$\eta_{10}(mV)$	Tafel slope (mV dec ⁻¹)	Reference
NiFeMo-2	262	64.8	This work
S/N- CMF@Fe _x Co _y Ni _{1-x-y} - MOF	296	53.5	Adv. Mater. 2023, 35, 2207888.
a-NiFeMo	280	49	Angew. Chem. Int. Ed. 2019, 58, 15772.
Ni-FeNi ₃ /Ni _{0.5-b} Fe _{0.5-} yMo _{1.5} O _x	278	42	Small 2024, 20, 2303927.
Ni _x Fe _{1-x} -THQ	272	47.9	Adv. Funct. Mater. 2024, 34, 2310902.
FeCo _{0.6} Ni _{0.4} -CAT	277	72	Sustainable Energy Fuels, 2020,4, 4589-4597
FeNi ₅ -MOF-450	307	56.2	Int. J. Miner., Metall. Mater., 2023 30, 1914– 1921.
ANC-Fe ₁ Ni ₂	266	39	J. Energy Chem. 2022, 71, 167-173.

Table S3 Comparison of the electrocatalytic stability of NiFeMo-2 with other transition metal-based OER

Current density (mA cm-Stability Catalysts References 2) NiFeMo-2 50 This work 65h NiFe-LDH/Sn NSs 60h 100 Appl. Catal., B. 2024, 124073. Ni-Fe LDH nanosheets 100h 50 Chem Catal. 2022, 2(9), 2312-2327. NiFe(OH)_x/(Ni, 20h 10 Small 2021, 17, 2007334. Fe)Se₂/CC Adv. Funct. Mater. 2021, 31, a-NiFeO_xH_y@NF 24h 50 2009032. iron rusts/Ni(OH)₂ 30h 10 Electrochim. Acta 2020, 353,

catalysts

			136478.
Ni _{0.3} Fe _{0.7} -LDH@NF	84h	10	Appl. Catal., B. 2023, 323, 122091.

Supplementary Note 1

In situ DEMS with ¹⁸O isotope labelling. First, the catalyst ink was prepared and dropped on a gold electrode. The ¹⁸O-labelled catalyst was prepared by chronopotential test in KOH-H₂¹⁸O solution. Then the ¹⁸O-labelled catalyst was rinsed with H₂¹⁶O to remove the H₂¹⁸O on the surface of electrode and drying, the DEMS experiments were performed. The in situ DEMS with isotope labelling was performed on electrochemical mass spectrometer purchased from Linglu Instruments (Shanghai) Co., Ltd. Typically, the test was carried out in a three-electrode cell with 1M KOH as electrolyte. The ¹⁸O-labelled NiFe-LDH or NiFeMo-2 catalyst with ¹⁸O-labeling, Ag/AgCl electrode prefilled with saturated KCl aqueous solution, and a Pt wire were used as working electrode, reference electrode, and counter electrode, respectively. LSV measurement was performed in KOH-H₂¹⁶O solution with a scan rate of 5 mV/s. In the meantime, gas products with different molecular weights were detected in real time by mass spectroscopy. The value of ³⁴O₂/³²O₂ is defined as the ratio of ³⁴O₂ signal to ³²O₂ signal at the onset time of oxygen evolution reaction obtained by mathematical fitting calculation.