Electronic Supplementary Information

### Optimization of peptide foldamer-based artificial retro-aldolase

Katarzyna Ożga, Ewa Rudzińska-Szostak and Łukasz Berlicki\*

Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science

and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

\*Corresponding author: e-mail: <u>lukasz.berlicki@pwr.edu.pl</u>

### Table of contents

| Table S1. MS and HPLC data of the synthetized peptides                                                                                    | S3         |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure S1. The design steps leading to optimization of artificial aldolases.                                                              | S4         |
| Figure S2. Retro-aldol reaction of methodol.                                                                                              | S4         |
| Figure S3. <sup>1</sup> H spectrum (A), TOCSY spectrum (B), and ROESY spectrum (C) recorded                                               | S5         |
| for peptide 8 in d <sup>3</sup> -MeOH at 291 K.                                                                                           |            |
| Figure S4. <sup>1</sup> H spectrum (A), TOCSY spectrum (B), and ROESY spectrum (C) recorded for pontide 9 in d <sup>3</sup> MoOH at 291 K | S6         |
| Eigure S5 <sup>1</sup> H spectrum (A) TOCSV spectrum (B) and POESV spectrum (C) recorded                                                  | \$7        |
| for pontide 12 in d <sup>3</sup> MoOH at 285 K                                                                                            | 57         |
| Figure S6 <sup>1</sup> H spectrum (A) TOCSV spectrum (B) and POESV spectrum (C) recorded                                                  | C Q        |
| for pontide 12 in d <sup>3</sup> MoOH at 202 K                                                                                            | 30         |
| Eigure S7 1H spectrum (A) TOCSV spectrum (B) and POESV spectrum (C) recorded                                                              | 50         |
| for pontide 1/ in 10 mM phosphate buffer pH 7.5 (10% D.O) at 292 K                                                                        | 39         |
| Table S2 NMP chamical chifts assignments for pentide $8$                                                                                  | \$10       |
| Table 52. NOESV contacts for pantide 9                                                                                                    | S10        |
| Table 55. NOEST contacts for peptide 6.                                                                                                   | <u>511</u> |
| Table S4. NMR chemical shifts assignments for peptide 9.                                                                                  | 512        |
| Table 55. NOESY contacts for peptide 9.                                                                                                   | 513        |
| Table S6. Nivir chemical shifts assignments for peptide 12.                                                                               | 514        |
| Table S7. NOESY contacts for peptide 12.                                                                                                  | \$15       |
| Table S8. NMR chemical shifts assignments for peptide 13.                                                                                 | S16        |
| Table S9. NOESY contacts for peptide 13.                                                                                                  | S17        |
| Table S10. NMR chemical shifts assignments for peptide 14.                                                                                | S18        |
| Table S11. NOESY contacts for peptide 14.                                                                                                 | S19        |
| Figure S8. Structural formulas for peptides 8 (A), 9 (B), 12 (C), 13 (D) and 14 (E).                                                      | S20        |
| Table S12. NMR calculation statistics for the biggest clusters.                                                                           | S21        |
| Figure S9. Average structure of cluster 1 (left) and superimposition of the 5 lowest                                                      | S21        |
| energy structures of cluster 1 (right).                                                                                                   |            |
| Figure S10. Average structure of cluster 2 (left) and superimposition of the 5 lowest                                                     | S21        |
| energy structures of cluster 2 (right).                                                                                                   |            |
| Figure S11. Average structure of cluster 3 (left) and superimposition of the 5 lowest                                                     | S22        |
| energy structures of cluster 3 (right).                                                                                                   |            |
| Table S13. Distances between active site residues calculated for 3 clusters                                                               | S22        |
| Figure S12. Analytical HPLC chromatograms for analyzed peptides.                                                                          | S23 – S25  |

| Peptide | Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MS                                   | MS                        | Analytical           |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|----------------------|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calculate                            | Experimental              | HPLC                 |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d m/z                                | m/z                       | t <sub>r</sub> [min] |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                           | (gradient*)          |
| 1       | Ac-200KLOOKC-NU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1046.6726                            | 1046.6719 [M              | 8.79 (I)             |
|         | AC ACONCONS MI2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + H <sup>+</sup> ]                | + H+]                     |                      |
| 2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 943.9789                             | V12 0003 [V1              | 7.75 (II)            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 2                               | 543.9803 [IVI<br>⊥ 2 ⊔+]• |                      |
|         | Ac-Ss@@Ss@@-GGG-a@@Ss@@Ss-NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H⁺];                                 | 462 802 <i>1</i>          |                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 962.8732                             | [M + K+H+]                |                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + K <sup>+</sup> H <sup>+</sup> ] |                           |                      |
| 3       | $A_{C} = S_{k}^{(1)} (\mathcal{H}_{k}^{(1)}) = G_{G} G_{C} = a^{(1)} (\mathcal{H}_{k}^{(1)}) \mathcal{H}_{S} = NH_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 712.1154                             | 712.1160 [M               | 8.88 (I)             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 3 H⁺]                           | + 3 H⁺]                   |                      |
| 4       | AC-SF())))))))))))))))))))))))))))))))))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 731.0889                             | 731.0884 [M               | 8.87 (II)            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 3 H⁺]                           | + 3 H⁺]                   |                      |
| 5       | $A_{C} = S_{V}^{(1)} (\uparrow) V_{V}^{(1)} (\uparrow) = G_{C}^{(2)} (\uparrow) K_{k}^{(1)} (\uparrow) K_{S} = NH_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1120.1217                            | 1120.1213 [M              | 7.89 (II)            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 2 H <sup>+</sup> ]              | + 2 H⁺]                   |                      |
| 6       | $A_{C} = O_{A}^{(1)} \mathbf{E}^{(1)} \mathbf{E}^{(2)} - G_{C} = A^{(1)} \mathbf{A}^{(2)} \mathbf{A}^{(2)} = NH_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1003.0695                            | 1003.0692 [M              | 7.10 (II)            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 2 H <sup>+</sup> ]              | + 2 H⁺]                   |                      |
| 7       | $A_{C} = O_{A}^{(1)} \mathbf{V} \mathbf{k}^{(1)} = G_{C} = A^{(1)} A \mathbf{k}^{(1)} A_{S} = NH_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1020.0799                            | 1020.0555 [M              | 7.71 (II)            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 2 H <sup>+</sup> ]              | + 2 H⁺]                   |                      |
| 8       | $A_{C} - \mathbf{K}_{A} (^{(1)}\mathbf{V}_{k} (^{(1)}\mathbf{A}_{k} (^{(1)}\mathbf{A}$ | 694.0705                             | 694.0716 [M               | 7.94 (II)            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 3 H <sup>+</sup> ]              | + 3 H+]                   |                      |
| 9       | $A_{C} - \mathbf{K}_{A} (^{(1)}\mathbf{V}_{k} (^{(1)}\mathbf{V}$ | 1079.1190                            | 1079.1185 [M              | 7.55 (II)            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 2H+]                            | + 2H+]                    |                      |
| 10      | $A_{C}-K_{A} \otimes \otimes V_{k} \otimes \otimes -GGG-A \otimes \otimes A_{v} \otimes \otimes A_{e}-NH_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1058.5875                            | 1058.5881 [M              | 8.02 (II)            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 2 H <sup>+</sup> ]              | + 2 H <sup>+</sup> ]      |                      |
| 11      | Ac-Ka@@yk@@-GGGG-a@@Ak@@Fe-NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1107.6298                            | 1107.6996 [M              | 7.85 (II)            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 2 H <sup>+</sup> ]              | + 2 H <sup>+</sup> ]      |                      |
| 12      | Ac-Ka&@ <b>Yk</b> &@-&&-@&kA@&aE-NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1031.1211                            | 1031.1221[M               | 7.88 (II)            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 2 H <sup>+</sup> ]              | + 2 H <sup>+</sup> ]      |                      |
| 13      | Ac-k@@Ak@@Sa-@@@-aS@@ky@@e-NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 782.6501                             | 782.6651 [M               | 7.94 (II)            |
|         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [M + 3 H <sup>+</sup> ]              | + 3 H <sup>+</sup> ]      |                      |
| 14      | Ac-a@ <b>Y</b> a@@Sa-@ <b>O</b> -@ <b>Ky</b> &@Sa-NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 695.3940                             | 695.3954 [M               | 16.41 (III)          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 3 H <sup>+</sup> ]              | + 3 H <sup>+</sup> ]      | - 4 - 5              |
| 15*     | Ac-@sQ@@yY@@-@-sE@@kA@-NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1008.5462                            | 1008.5677 [M              | 14.56 (III)          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [M + 2 H <sup>+</sup> ]              | + 2 H <sup>+</sup> ]      |                      |
| 16*     | Ac-OeQOO <b>k</b> NOO-O-sYOOyKO-NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1050.5806                            | 1050.6244 [M              | 9.00 (111)           |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [IVI + 2 H <sup>+</sup> ]            | + 2 H <sup>+</sup> ]      |                      |
| 17      | Ac-a@@Ya@@Sa-@@-@@Ay@@Sa-NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1014.0581                            | 1014.0566 [M              | 17.46 (III)          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [IVI + 2 H <sup>+</sup> ]            | + 2 H <sup>+</sup> ]      | 15.01 (11)           |
| 18      | Ac-a@ <b>OA</b> a@OSa-OO-@O <mark>Ky</mark> OOSa-NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 996.5739                             | 996.5738 [M               | 15.31 (III)          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [IVI + 2 H <sup>+</sup> ]            | + 2 H <sup>+</sup> ]      | 15.00 (11)           |
| 19      | Ac-a@ <b>@Y</b> a@@Sa-@ <b>@-@@Ka</b> @@Sa-NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 996.5739                             | 996.5757 [M               | 15.39 (III)          |
|         | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [M + 2 H <sup>+</sup> ]              | + 2 H⁺]                   |                      |

Table S1. MS and HPLC data of the synthetized peptides

\*Previously published in [1]

(I)  $H_2O/ACN$ : 0-3 min – 0% ACN, 3-13 min 90% ACN (II)  $H_2O/ACN$ : 0-2 min – 10% ACN, 2-11 min 90% ACN (III)  $H_2O/ACN$ : 0-2 min – 10% ACN, 2-32 min 90% ACN

| DESIGN<br>ROUND | SCAFFOLD | MODELS   | HIGHEST k <sub>cat</sub><br>·10 <sup>6</sup> [s <sup>-1</sup> ] | COMMENT                                                          |       | $\wedge$      |
|-----------------|----------|----------|-----------------------------------------------------------------|------------------------------------------------------------------|-------|---------------|
| 1               | Helix    |          | 6.3 ± 1.4                                                       | Single helix with<br>lysine residues<br>organized on<br>one side |       |               |
| 2               | HLH      | the form | 11.6 ± 1.4                                                      | Helix-loop-helix<br>with minimal<br>active site                  | vity  | number of lys |
| 3               | HLH      |          | 22.8 ± 1.2                                                      | Helix-loop-helix<br>with native<br>active site                   | activ | ines          |
| 4               | НТН      |          | 25.0 ± 3.0                                                      | Helix-turn-helix<br>with native<br>active site                   |       | 7             |

**Figure S1**. The design steps leading to optimization of artificial aldolases. In the presented models, the helical structures are represented as grey tubes and the linkers as green wires. The catalytic residues are shown in stick representation.



Figure S2. Retro-aldol reaction of methodol.



Figure S3. <sup>1</sup>H spectrum

(A), TOCSY spectrum (B), and ROESY spectrum (C) recorded for peptide  ${f 8}$  in d<sup>3</sup>-MeOH at 291 K.



S6



**Figure S4**. <sup>1</sup>H spectrum (A), TOCSY spectrum (B), and ROESY spectrum (C) recorded for pept<sup>4</sup>de **9** in d<sup>3</sup>-MeOH at 291 K.

**Figure S5**. <sup>1</sup>H spectrum (A), TOCSY spectrum (B), and ROESY spectrum (C) recorded for peptide **12** in  $d^3$ -MeOH at 285 K.



**Figure S6**. <sup>1</sup>H spectrum (A), TOCSY spectrum (B), and ROESY spectrum (C) recorded for peptide **13** in  $d^3$ -MeOH at 293 K.



В

С

**Figure S7**. <sup>1</sup>H spectrum (A), TOCSY spectrum (B), and ROESY spectrum (C) recorded for peptide **14** in 10 mM phosphate buffer pH 7.5 (10%  $D_2O$ ) at 293 K.

| Iddle 32. NIVIR CHEITIICAI STITLS ASSIGNMENTS TO DEDLIGE C | Table S2. | NMR | chemical | shifts | assignme | ents for | peptide 8 |
|------------------------------------------------------------|-----------|-----|----------|--------|----------|----------|-----------|
|------------------------------------------------------------|-----------|-----|----------|--------|----------|----------|-----------|

| Residue | Proton          | Chemical<br>shift |
|---------|-----------------|-------------------|
| ۵c۵     | НΔ              | 2 00              |
| Aco     | HN              | 8 29              |
|         | НА              | 0.23<br>4.24      |
| l vc1   |                 | 1 /2.             |
| Lysi    | CH.             | 1.43,             |
|         |                 | 1 72 1 83         |
|         | HN              | 8 46              |
| ala2    | НА              | 4 32              |
| alaz    | НВ              | 1 38              |
|         | HN              | 7 73              |
|         | НА              | 2.97              |
|         | НВ              | 4.68              |
| CpS3    |                 | 1.60              |
|         | CH <sub>2</sub> | 1.00,             |
|         |                 | 1.79:2.03         |
|         | HN              | 7 91              |
|         | НА              | 7.31              |
|         | НА              | 1.32              |
| CnR4    | ПВ              | 4.30              |
| Сріч    |                 | 1.43,             |
|         | CH <sub>2</sub> | 1.38,             |
|         |                 | 1 80. 2 04        |
|         | HN              | 8 /7              |
|         | НА              | 0.47              |
|         | НА              | 3.03              |
| Tyr5    |                 | 7 1 2             |
|         |                 | 6.76              |
|         |                 | 0.70              |
|         | ни              | 8 21              |
|         |                 | 4.20              |
| lys6    |                 | 4.29              |
| 1930    | CH.             | 1.00,             |
|         |                 | 1 53 1 76         |
|         | HN              | 7.69              |
|         | НА              | 2.81              |
|         | НВ              | 1 38              |
| CnS7    |                 | 1.62.             |
| ср57    |                 | 1.02,             |
|         | CH <sub>2</sub> | 1.02,             |
|         |                 | 2 00. 2 07        |
|         | HN              | 8.36              |
|         | НА              | 2,79              |
|         | HB              | 4.40              |
|         |                 | 1 57.             |
| CpR8    |                 | 1.57,             |
|         | CH              | 1.75              |
|         |                 | 1.86              |
|         |                 | 1.90; 2.06        |
|         | HN              | 8.62              |
| Gly9    | НА              | 4.23; 3.81        |

| CI-10    | HN              | 8.53       |
|----------|-----------------|------------|
| GIY10    | HA              | 4.02; 3.94 |
| <u>.</u> | HN              | 8.42       |
| Gly11    | HA              | 3.91       |
|          | HN              | 8.22       |
| ala12    | HA              | 4.34       |
|          | НВ              | 1.36       |
|          | HN              | 7.73       |
|          | НА              | 2.93       |
|          | НВ              | 4.54       |
| CpS13    |                 | 1.61:      |
|          | CH <sub>2</sub> | 1.70:      |
|          | 2               | 1.95; 2.03 |
|          | HN              | 8.04       |
|          | НА              | 2.80       |
|          | НВ              | 4.39       |
| CpR14    |                 | 1.47:      |
|          |                 | 1.59:      |
|          | CH <sub>2</sub> | 1.76:      |
|          |                 | 1.83: 2.07 |
|          | HN              | 8.43       |
| Ala15    | НА              | 4.32       |
| / 110/20 | HB              | 1.45       |
|          | HN              | 8.56       |
|          | НА              | 4.36       |
| lvs16    |                 | 1 /18.     |
| 19510    | CH.             | 1.40,      |
|          | CH2             | 1 71 2 02  |
|          | HN              | 7.62       |
|          | НА              | 2.89       |
|          | НВ              | 4 55       |
| CpS17    |                 | 1.64       |
| 00017    |                 | 1 79       |
|          | CH <sub>2</sub> | 1.83:      |
|          |                 | 1.99: 2.03 |
|          | HN              | 8.20       |
|          | НА              | 2.79       |
|          | HB              | 4.40       |
| <b>.</b> |                 | 1.51:      |
| CpR18    |                 | 1.61:      |
|          | CH <sub>2</sub> | 1.73:      |
|          | 52              | 1.82:      |
|          |                 | 1.90; 2.05 |
|          | HN              | 8.67       |
| Ala19    | HA              | 4.40       |
|          | HR              |            |
|          | HN              | 8.61       |
|          | HA              | 4.41       |
| glu20    | HB              |            |
|          | HG              | 2 43       |
|          | HN1             | 7.64       |
| $NH_2$   | HN2             | 7 29       |
|          | 1 11112         | 1.25       |

# Table S3. NOESY contacts for peptide 8. Sequential (i.)

| Sequential (I,<br><i>i</i> -1)                                                                                                                                                                                                              | Intensity                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HN1 – HA0                                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN2 – HA1                                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN3 – HA2                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN4 – HA3                                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN5 – HA4                                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN6 – HA5                                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN7 – HA6                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN8 – HA7                                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN9 – HA8                                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN10 – HA9                                                                                                                                                                                                                                  | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN11 – HA10                                                                                                                                                                                                                                 | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN12 – HA11                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN13 – HA12                                                                                                                                                                                                                                 | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN14 – HA13                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN15 – HA14                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN16 – HA15                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN17 – HA16                                                                                                                                                                                                                                 | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN18 – HA17                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN19 – HA18                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                     |
| HN20 – HA19                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                     |
| $HN_2 - HA20$                                                                                                                                                                                                                               | Μ                                                                                                                                                                                                                                                                                                                                                                     |
| NH-HN                                                                                                                                                                                                                                       | Intensity                                                                                                                                                                                                                                                                                                                                                             |
| HN1 – HN2                                                                                                                                                                                                                                   | M                                                                                                                                                                                                                                                                                                                                                                     |
| HN2 – HN3                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN4 – HN5                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN6 – HN7                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN7 – HN8                                                                                                                                                                                                                                   | W                                                                                                                                                                                                                                                                                                                                                                     |
| HN8 – HN9                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN10 – HN11                                                                                                                                                                                                                                 | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN11 – HN12                                                                                                                                                                                                                                 | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN12 – HN13                                                                                                                                                                                                                                 | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN13 – HN14                                                                                                                                                                                                                                 | W                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |
| <u>HN14 – HN15</u>                                                                                                                                                                                                                          | М                                                                                                                                                                                                                                                                                                                                                                     |
| HN14 – HN15<br>HN16 – HN17                                                                                                                                                                                                                  | M                                                                                                                                                                                                                                                                                                                                                                     |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18                                                                                                                                                                                                   | M<br>M<br>W                                                                                                                                                                                                                                                                                                                                                           |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18<br>HN18 – HN19                                                                                                                                                                                    | M<br>M<br>W<br>M                                                                                                                                                                                                                                                                                                                                                      |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18<br>HN18 – HN19<br>HN20 – HN2(1)                                                                                                                                                                   | M<br>M<br>W<br>M<br>M                                                                                                                                                                                                                                                                                                                                                 |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18<br>HN18 – HN19<br>HN20 – HN2(1)                                                                                                                                                                   | M<br>M<br>W<br>M<br>M                                                                                                                                                                                                                                                                                                                                                 |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18<br>HN18 – HN19<br>HN20 – HN2(1)<br>Medium range<br>( <i>i</i> , <i>i</i> -2)                                                                                                                      | M<br>M<br>W<br>M<br>M<br>Intensity                                                                                                                                                                                                                                                                                                                                    |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18<br>HN18 – HN19<br>HN20 – HN2(1)<br>Medium range<br>( <i>i</i> , <i>i</i> -2)<br>HN13 – HA11                                                                                                       | M<br>M<br>W<br>M<br>M<br>Intensity<br>W                                                                                                                                                                                                                                                                                                                               |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18<br>HN18 – HN19<br>HN20 – HN2(1)<br>Medium range<br>( <i>i</i> , <i>i</i> -2)<br>HN13 – HA11<br>NH12 – HA10                                                                                        | M<br>M<br>W<br>M<br>M<br>M<br>Intensity<br>W<br>W                                                                                                                                                                                                                                                                                                                     |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18<br>HN18 – HN19<br>HN20 – HN2(1)<br>Medium range<br>( <i>i</i> , <i>i</i> -2)<br>HN13 – HA11<br>NH12 – HA10<br>HN11 – HA9                                                                          | M<br>M<br>W<br>M<br>M<br>M<br>M<br>M<br>Intensity<br>W<br>W<br>W                                                                                                                                                                                                                                                                                                      |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18<br>HN18 – HN19<br>HN20 – HN2(1)<br>Medium range<br>( <i>i</i> , <i>i</i> -2)<br>HN13 – HA11<br>NH12 – HA10<br>HN11 – HA9<br>HN16 – HA14                                                           | M<br>M<br>W<br>M<br>M<br>M<br>M<br>M<br>M<br>V<br>W<br>W<br>W<br>W<br>W                                                                                                                                                                                                                                                                                               |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18<br>HN18 – HN19<br>HN20 – HN2(1)<br>Medium range<br>( <i>i</i> , <i>i</i> -2)<br>HN13 – HA11<br>NH12 – HA10<br>HN11 – HA9<br>HN16 – HA14<br>HN19 – HB17                                            | M<br>M<br>W<br>M<br>M<br>M<br>M<br>Intensity<br>W<br>W<br>W<br>W<br>W<br>W                                                                                                                                                                                                                                                                                            |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18<br>HN18 – HN19<br>HN20 – HN2(1)<br>Medium range<br>( <i>i</i> , <i>i</i> -2)<br>HN13 – HA11<br>NH12 – HA10<br>HN11 – HA9<br>HN16 – HA14<br>HN19 – HB17<br>HN15 – HB13                             | M           M           W           M           Intensity           W           W           W           M           M                                                                                                                                                                                                                                                 |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18<br>HN18 – HN19<br>HN20 – HN2(1)<br>Medium range<br>( <i>i</i> , <i>i</i> -2)<br>HN13 – HA11<br>NH12 – HA10<br>HN11 – HA9<br>HN16 – HA14<br>HN19 – HB17<br>HN15 – HB13<br>HN5 – HB3                | M           M           W           M           Intensity           W           W           W           M           M           M                                                                                                                                                                                                                                     |
| HN14 – HN15<br>HN16 – HN17<br>HN17 – HN18<br>HN18 – HN19<br>HN20 – HN2(1)<br>Medium range<br>( <i>i</i> , <i>i</i> -2)<br>HN13 – HA11<br>NH12 – HA10<br>HN11 – HA9<br>HN16 – HA14<br>HN19 – HB17<br>HN15 – HB13<br>HN5 – HB3<br>HN14 – HA12 | M           M           W           M           Intensity           W           W           W           M           M           M           M           W           W           W           W           W           W           W           W           W           W           W           W           W           W           W           W           W           W |

HN7 – HA5

W

| Ar(1)5 – HA3 W          |   |  |
|-------------------------|---|--|
| N14 – HB12              | W |  |
| HA4 – HB2               | W |  |
| HB8 – CH <sub>2</sub> 6 | W |  |
| N17 – HA15              | W |  |
|                         |   |  |

| Medium range<br>(i, i+2) | Intensity |
|--------------------------|-----------|
| HN4 – HA6                | W         |
| HB17 - HB19              | М         |
| HB3 – HB5                | W         |
| HB13 – HB15              | М         |
| HA7 – HA9                | М         |

| Medium range<br>( <i>i</i> , <i>i-3</i> ) | Intensity |
|-------------------------------------------|-----------|
| HA6 – HA3                                 | W         |
| HA10 – HA7                                | W         |
| Ar(1)5 – HB2                              | W         |
| Ar(2)5 – HB2                              | w         |

| Medium range<br>( <i>i, i+3</i> ) | Intensity |
|-----------------------------------|-----------|
| HB17 – HE20                       | W         |
| HA11 – HA14                       | W         |
| HB13 – HA16                       | W         |

| Medium range<br>( <i>i</i> , <i>i-4</i> ) | Intensity |
|-------------------------------------------|-----------|
| HD20 – HA16                               | W         |

| Medium range<br>( <i>i, i+4</i> ) | Intensity |
|-----------------------------------|-----------|
| HN1 – HA5                         | W         |

| NH   | 3J [Hz] |
|------|---------|
| HN1  | 6.37    |
| HN2  | 7.27    |
| HN3  | 8.29    |
| HN4  | 9.37    |
| HN5  | 5.23    |
| HN6  | 8.59    |
| HN7  | 8.41    |
| HN8  | 9.13    |
| HN10 | 5.56    |
| HN12 | 6.91    |
| HN13 | 8.29    |
| HN14 | 9.13    |
| HN15 | 5.28*   |
| HN16 | 8.23    |
| HN17 | 8.47    |
| HN18 | 9.43    |
| HN19 | 6.31    |
| HN20 | 8.05    |

|  | Table S4. | NMR | chemical | shifts | assignments | for | peptide | <b>9</b> د |
|--|-----------|-----|----------|--------|-------------|-----|---------|------------|
|--|-----------|-----|----------|--------|-------------|-----|---------|------------|

|         |                 | Chemical   |
|---------|-----------------|------------|
| Residue | Proton          | shift      |
|         |                 | [ppm]      |
| Ac0     | HA              | 2.00       |
|         | HN              | 8.27       |
|         | НА              | 4.24       |
| Lys1    |                 | 1.43,1.52, |
|         | CH <sub>2</sub> | 1.73, 1.83 |
|         | HN              | 8.43       |
| ala2    | HA              | 4.34       |
|         | НВ              | 1.38       |
|         | HN              | 7.72       |
|         | HA              | 2.97       |
| CpS3    | НВ              | 4.68       |
|         |                 | 1.62,      |
|         | CH <sub>2</sub> | 1.74, 2.03 |
|         | HN              | 7.91       |
|         | HA              | 2.82       |
|         | НВ              | 4.38       |
| CpR4    |                 | 1.43,      |
|         |                 | 1.58,      |
|         | CH <sub>2</sub> | 1.73,      |
|         |                 | 1.80, 2.03 |
|         | HN              | 8.46       |
|         | HA              | 4.44       |
| TurE    | HB              | 3.03       |
| TYIS    | HD              | 7.13       |
|         | HE              | 6.67       |
|         | ОН              |            |
|         | HN              | 8.30       |
| buch    | HA              | 4.29       |
| iyso    | CH.             | 1.00,      |
|         |                 | 1.53, 1.77 |
|         | HN              | 7.69       |
|         | HA              | 2.81       |
|         | НВ              | 4.38       |
| CpS7    |                 | 1.61,      |
|         | CU              | 1.69,      |
|         |                 | 1.82,      |
|         |                 | 1.92, 2.07 |
| CpR8    | HN              | 8.34       |
|         | HA              | 2.79       |
|         | НВ              | 4.40       |
|         |                 | 1.57,      |
|         |                 | 1.62,      |
|         | CH <sub>2</sub> | 1.75,      |
|         |                 | 1.87,      |
|         |                 | 1.90, 2.06 |
| Glv9    | HN              | 8.61       |
| Giyb    | HA              | 3.80, 4.23 |

| e <b>9</b> .    |                 |                    |
|-----------------|-----------------|--------------------|
| Ch/10           | HN              | 8.51               |
| Giy10           | HA              | 3.94, 4.02         |
| Ch.11           | HN              | 8.41               |
| GIVII           | HA              | 3.89, 3.92         |
|                 | HN              | 8.21               |
| ala12           | HA              | 4.34               |
|                 | НВ              | 1.36               |
|                 | HN              | 7.70               |
| CpS13           | НА              | 2.91               |
|                 | НВ              | 4.54               |
|                 |                 | 1.55.              |
|                 | CH <sub>2</sub> | 1.69.              |
|                 | 0.12            | 1.93. 1.98         |
|                 | HN              | 8.07               |
|                 | HA              | 2.81               |
|                 | HB              | 4.38               |
| CpR14           |                 | 1 48               |
| 00.12.          |                 | 1 59               |
|                 | CH <sub>2</sub> | 1 77               |
|                 |                 | 1 82 2 09          |
|                 | HN              | 8 44               |
| Ala15           | НА              | 4 37               |
| Alais           | НВ              | 1 47               |
| lys16           | HN              | 8.56               |
|                 | НА              | 4.37               |
|                 |                 | 4.57               |
|                 | CH <sub>2</sub> | 1 71 2 00          |
|                 | HN              | 7 50               |
|                 | НА              | 2.03               |
|                 |                 | 2.55               |
| CpS17           | ПВ              | 4.07               |
|                 | CH.             | 1.07,              |
|                 | CH <sub>2</sub> | 1 80 2 05          |
|                 |                 | 1.03, 2.05         |
|                 |                 | 7.55               |
| CpR18           |                 | 1 27               |
|                 |                 | 4.57               |
|                 |                 | 1 57               |
|                 | CH <sub>2</sub> | 1.57,              |
|                 |                 | 1 81 1 07          |
| Phe19           | HN              | 2.01, 1.92<br>8 7/ |
|                 |                 | Q 72               |
|                 |                 | 0.75<br>201 216    |
|                 |                 | 7 22               |
|                 | Har             | 7.22 -             |
|                 | LINI            | 7.55               |
| al20            |                 | 8.60               |
| giu20           |                 | 4.31               |
|                 |                 | 1.80, 2.12         |
| NH <sub>2</sub> |                 | 7.28               |
|                 | HN2             | 7.62               |

 Table S5. NOESY contacts for peptide 9.

| Sequential (i, i- | Intoncity |
|-------------------|-----------|
| 1)                | intensity |
| HN1 – HA0         | S         |
| HN2 – HA1         | S         |
| HN3 – HA2         | S         |
| HN4 – HA3         | S         |
| HN5 – HA4         | S         |
| HN6 – HA5         | S         |
| HN7 – HA6         | S         |
| HN8 – HA7         | S         |
| HN9 – HA8         | S         |
| HN10 – HA9        | М         |
| HN11 – HA10       | М         |
| HN12 – HA11       | S         |
| HN13 – HA12       | S         |
| HN14 – HA13       | S         |
| HN15 – HA14       | S         |
| HN16 – HA15       | S         |
| HN17 – HA16       | S         |
| HN18 – HA17       | S         |
| HN19 – HA18       | S         |
| HN20 – HA19       | S         |
| $HN_2 - HA20$     | S         |
| $HN_2 - HA20$     | W         |

| NH-HN         | Intensity |
|---------------|-----------|
| HN1 – HN2     | W         |
| HN2 – HN3     | М         |
| HN4 – HN5     | М         |
| HN6 – HN7     | М         |
| HN7 – HN8     | W         |
| HN8 – HN9     | М         |
| HN10 – HN11   | М         |
| HN11 – HN12   | М         |
| HN12 – HN13   | М         |
| HN13 – HN14   | W         |
| HN14 – HN15   | М         |
| HN18 – HN19   | М         |
| HN19 – HN20   | М         |
| HN20 – HN2(1) | М         |

| Medium range<br>( <i>i</i> , <i>i</i> -2) | Intensity |
|-------------------------------------------|-----------|
| HN9 – HB7                                 | М         |
| NH19 – HB17                               | М         |

| HN5 – HB3      | М |
|----------------|---|
| HN15 – HB19    | М |
| HN12 – HA10    | W |
| HN3 – HA1      | W |
| HN13 – HA11    | W |
| NH2(2) – HA19  | W |
| HAr19 – HB17   | W |
| HD5 – HB3      | W |
| HN14 – HB12    | W |
| HN17 – HB15    | М |
| NH2(2) – HB 19 | М |
| HB4 – HB2      | S |
| HB14 – HB12    | S |
| HB18 – CH2 16  | М |
| Ar(1)5 – HA3   |   |
|                |   |

| Medium range<br>( <i>i, i</i> +2) | Intensity |
|-----------------------------------|-----------|
| HN18 – HA20                       | W?        |
| HN4 – HA6                         | W?        |
| HB3 – HB5                         | S         |
| HB17 – HB19 (1)                   | S         |
| HB17 – HB19 (2)                   | S         |

| NH   | 3J [Hz] |
|------|---------|
| HN1  | 8.39    |
| HN2  | 7.32*   |
| HN3  | 8.62    |
| HN4  | 9.50    |
| HN5  | 5.28    |
| HN6  | 8.48    |
| HN7  | 8.34    |
| HN8  | 5.09    |
| HN9  | 6.12*   |
| HN10 | 5.63    |
| HN11 | 5.64    |
| HN12 | 6.97    |
| HN13 | 8.57    |
| HN14 | 9.16    |
| HN15 | 5.28*   |
| HN16 | 8.18    |
| HN17 | 8.07    |
| HN18 | 9.61    |
| HN19 | 6.37    |
| HN20 | 7.54*   |

 Table S6. NMR chemical shifts assignments for peptide 12.

Residue Proton Chemical

|      |                 | [ppm]      |
|------|-----------------|------------|
| Ac0  | HA              | 1.998      |
|      | HN              | 8.338      |
| 1    | HA              | 4.234      |
|      |                 | 1.835;     |
| LYSI | CU              | 1.724;     |
|      | CH <sub>2</sub> | 1.516;     |
|      |                 | 1.426      |
|      | HN              | 8.526      |
| ala2 | HA              | 4.316      |
|      | CH₃             | 1.388      |
|      | HN              | 7.752      |
| Coss | HB              | 2.992      |
| Chas | HA              | 4.4724     |
|      | CH <sub>2</sub> | -          |
|      | HN              | 7.890      |
| C=D4 | HB              | 2.862      |
| Срк4 | HA              | 4.387      |
|      | CH <sub>2</sub> | -          |
|      | HN              | 8.516      |
|      | HA              | 4.378      |
| T    |                 | 2.993      |
| Tyr5 | CH <sub>2</sub> | 3.084      |
|      | CH arom         | 7.134 (1); |
|      | CH arom         | 6.772 (2)  |
|      | HN              | 8.372      |
|      | HA              | 4.230      |
| lys6 |                 | 1.755;     |
|      | CH <sub>2</sub> | 1.471;     |
|      |                 | 0.892      |
|      | HN              | 7.650      |
| CnS7 | HB              | 2.969      |
| Cps7 | HA              | 4.676      |
|      | CH <sub>2</sub> | -          |
| CpR8 | HN              | 8.618      |
|      | HB              | 2.616      |
|      | HA              | 4.349      |
|      |                 | 1.998;     |
|      | CH <sub>2</sub> | 1.888;     |
|      |                 | 1.737;     |
|      |                 | 1.605;     |
|      |                 | 1.505      |
|      | HN              | 7.984      |
| 0200 | HB              | 3.074      |

|                 | HA                                                                   | 4.590                                                                |
|-----------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
|                 | CH <sub>2</sub>                                                      | -                                                                    |
|                 | HN                                                                   | 8.309                                                                |
|                 | НВ                                                                   | 2.788                                                                |
| C=C10           | HA                                                                   | 4.374                                                                |
| CDSTO           |                                                                      | 1.379                                                                |
|                 | CH <sub>2</sub>                                                      | 1.746                                                                |
|                 |                                                                      | 1.629                                                                |
|                 | HN                                                                   | 7.932                                                                |
| C= D11          | HB                                                                   | 2.788                                                                |
| Сркп            | HA                                                                   | 4.479                                                                |
|                 | CH <sub>2</sub>                                                      | -                                                                    |
|                 | HN                                                                   | 8.119                                                                |
| 0.040           | НВ                                                                   | 2.905                                                                |
| CpS12           | HA                                                                   | 4.581                                                                |
|                 | CH <sub>2</sub>                                                      | -                                                                    |
|                 | HN                                                                   | 8.955                                                                |
|                 | НА                                                                   | 4.286                                                                |
| 1 40            |                                                                      | 1.884;                                                               |
| lys13           |                                                                      | 1.837;                                                               |
|                 | CH <sub>2</sub>                                                      | 1.672;                                                               |
|                 |                                                                      | 1.544                                                                |
|                 | HN                                                                   | 8.657                                                                |
| Ala14           | HA                                                                   | 4.420                                                                |
|                 | CH₃                                                                  | 1.409                                                                |
|                 | HN                                                                   | 7.605                                                                |
| C D4 F          | НВ                                                                   | 2.915                                                                |
| Сркт5           | HA                                                                   | 4.567                                                                |
|                 | CH <sub>2</sub>                                                      | -                                                                    |
|                 | HN                                                                   | 8.225                                                                |
| 6-646           | НВ                                                                   | 2.804                                                                |
| CpS16           | HA                                                                   | 4.424                                                                |
|                 | CH <sub>2</sub>                                                      | -                                                                    |
|                 | HN                                                                   | 8.699                                                                |
| ala17           | HA                                                                   | 4.379                                                                |
|                 | CH <sub>3</sub>                                                      | 1.465                                                                |
|                 | HN                                                                   | 8.682                                                                |
|                 | HA                                                                   | 4.409                                                                |
| Glu18           | <u></u>                                                              | 2.284                                                                |
|                 | CH <sub>2</sub>                                                      | 1.952                                                                |
|                 | СООН                                                                 | 2.438                                                                |
|                 | HN1                                                                  | 7.662                                                                |
| NH <sub>2</sub> | HN2                                                                  | 7.328                                                                |
| Glu18<br>NH2    | CH <sub>3</sub><br>HN<br>HA<br>CH <sub>2</sub><br>COOH<br>HN1<br>HN2 | 1.465<br>8.682<br>4.409<br>2.284<br>1.952<br>2.438<br>7.662<br>7.328 |

## Table S7. NOESY contacts for peptide 12.

| <i>i</i> -1) | Sequential ( <i>i,</i><br><i>i</i> -1) | Intensity |
|--------------|----------------------------------------|-----------|
|--------------|----------------------------------------|-----------|

| HN1 – HA0 | S |
|-----------|---|
| HN2 – HA1 | S |

| HN3 – HA2                                                                                                                                                      | S                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| HN4 – HB3                                                                                                                                                      | S                                                                                               |
| HN5 – HB4                                                                                                                                                      | S                                                                                               |
| HN6 – HA5                                                                                                                                                      | S                                                                                               |
| HN7 – HA6                                                                                                                                                      | S                                                                                               |
| HN8 – HB7                                                                                                                                                      | S                                                                                               |
| HN9 – HB8                                                                                                                                                      | S                                                                                               |
| HN10 – HA9                                                                                                                                                     | S                                                                                               |
| HN11 – HA10                                                                                                                                                    | S                                                                                               |
| HN12 – HA11                                                                                                                                                    | S                                                                                               |
| HN13 – HA12                                                                                                                                                    | S                                                                                               |
| HN14 – HB13                                                                                                                                                    | S                                                                                               |
| HN15 – HB14                                                                                                                                                    | S                                                                                               |
| HN16 – HA15                                                                                                                                                    | S                                                                                               |
|                                                                                                                                                                |                                                                                                 |
| HN17 – HA16                                                                                                                                                    | S                                                                                               |
| HN17 – HA16<br>HN18 – HB17                                                                                                                                     | S<br>S                                                                                          |
| HN17 – HA16<br>HN18 – HB17                                                                                                                                     | S<br>S<br>S (1)                                                                                 |
| HN17 – HA16<br>HN18 – HB17<br>HN – HA20                                                                                                                        | S<br>S<br>S (1)<br>W (2)                                                                        |
| HN17 – HA16<br>HN18 – HB17<br>HN – HA20                                                                                                                        | S<br>S (1)<br>W (2)                                                                             |
| HN17 – HA16<br>HN18 – HB17<br>HN – HA20<br>NH-HN                                                                                                               | S<br>S<br>S (1)<br>W (2)<br>Intensity                                                           |
| HN17 – HA16<br>HN18 – HB17<br>HN – HA20<br>NH-HN<br>HN1 – HN2                                                                                                  | S<br>S<br>S (1)<br>W (2)<br>Intensity<br>W                                                      |
| HN17 – HA16<br>HN18 – HB17<br>HN – HA20<br>NH-HN<br>HN1 – HN2<br>HN2 – HN3                                                                                     | S<br>S<br>S (1)<br>W (2)<br>Intensity<br>W<br>M                                                 |
| HN17 – HA16<br>HN18 – HB17<br>HN – HA20<br>NH-HN<br>HN1 – HN2<br>HN2 – HN3<br>HN4 – HN5                                                                        | S<br>S(1)<br>W(2)<br>Intensity<br>W<br>M<br>M                                                   |
| HN17 – HA16<br>HN18 – HB17<br>HN – HA20<br>NH-HN<br>HN1 – HN2<br>HN2 – HN3<br>HN4 – HN5<br>HN6 – HN7                                                           | S<br>S(1)<br>W(2)<br>Intensity<br>W<br>M<br>M<br>M<br>M                                         |
| HN17 - HA16<br>HN18 - HB17<br>HN - HA20<br>NH-HN<br>HN1 - HN2<br>HN2 - HN3<br>HN4 - HN5<br>HN6 - HN7<br>HN8 - HN9                                              | S<br>S (1)<br>W (2)<br>Intensity<br>W<br>M<br>M<br>M<br>M<br>W                                  |
| HN17 - HA16<br>HN18 - HB17<br>HN - HA20<br>NH-HN<br>HN1 - HN2<br>HN2 - HN3<br>HN4 - HN5<br>HN6 - HN7<br>HN8 - HN9<br>HN10 - HN11                               | S<br>S(1)<br>W(2)<br>Intensity<br>W<br>M<br>M<br>M<br>M<br>M<br>W<br>W                          |
| HN17 - HA16<br>HN18 - HB17<br>HN - HA20<br>NH-HN<br>HN1 - HN2<br>HN2 - HN3<br>HN4 - HN5<br>HN6 - HN7<br>HN8 - HN9<br>HN10 - HN11<br>HN12 - HN13                | S<br>S(1)<br>W(2)<br>Intensity<br>W<br>M<br>M<br>M<br>M<br>M<br>W<br>W<br>W<br>W                |
| HN17 - HA16<br>HN18 - HB17<br>HN - HA20<br>NH-HN<br>HN1 - HN2<br>HN2 - HN3<br>HN4 - HN5<br>HN6 - HN7<br>HN8 - HN9<br>HN10 - HN11<br>HN12 - HN13<br>HN14 - HN15 | S<br>S(1)<br>W(2)<br>Intensity<br>W<br>M<br>M<br>M<br>M<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W |

| $HN_2 - HN20$ | M (1) |
|---------------|-------|
|---------------|-------|

| Medium                           | Intensity |  |
|----------------------------------|-----------|--|
| range ( <i>i, i</i> -2)          | incensity |  |
| NH3 - HA1                        | W         |  |
| NH5 - HA3                        | М         |  |
| NH9 - HA7                        | М         |  |
| NH13 - HA11                      | М         |  |
| NH15 - HA13                      | W         |  |
| NH17 - HA15                      | М         |  |
| CH <sub>arom</sub> 5(1) -<br>HA3 | W         |  |

| <sup>3</sup> J <sub>HN-HA</sub> [Hz] |       |  |
|--------------------------------------|-------|--|
| HN1                                  | 6.263 |  |
| HN3                                  | 8.436 |  |
| HN6                                  | 8.778 |  |
| HN8                                  | 9.861 |  |
| HN9                                  | 7.702 |  |
| HN10                                 | 9.117 |  |
| HN11                                 | 7.426 |  |
| HN12                                 | 9.565 |  |
| HN13                                 | 6.036 |  |
| HN14                                 | 7.801 |  |
| HN15                                 | 8.610 |  |
| HN16                                 | 9.433 |  |

 Table S8. NMR chemical shifts assignments for peptide 13.

|         |        |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |       |    |       |
|---------|--------|----------|-----------------------------------------|-------|----|-------|
|         |        | Chemical |                                         | Ac1   | HA | 2.032 |
| Residue | Proton | shift    |                                         | 1.002 | HN | 8.206 |
|         |        | [ppm]    |                                         | Lysz  | HA | 4.312 |

|         | 1               | 1      |
|---------|-----------------|--------|
|         |                 | 1.838; |
|         |                 | 1.695; |
|         |                 | 1.516; |
|         |                 | 1.438  |
|         | HN              | 7.932  |
|         | НВ              | 2.950  |
|         | НА              | 4 502  |
| CnS3    |                 | 2.005  |
| Chas    |                 | 2.005; |
|         | CH <sub>2</sub> | 1.938; |
|         | -               | 1.858  |
|         |                 | 1.634  |
|         | HN              | 8.026  |
|         | HB              | 2.785  |
|         | HA              | 4.397  |
| 6.54    |                 | 2.064; |
| Срк4    |                 | 1.863: |
|         | СНа             | 1 750  |
|         |                 | 1 609  |
|         |                 | 1.005, |
|         |                 | 1.500  |
| •• -    | HN              | 8.437  |
| Ala5    | HA HA           | 4.344  |
|         | HB              | 1.424  |
|         | HN              | 8.502  |
|         | HA              | 4.385  |
|         |                 | 2 011. |
| lys6    |                 | 1 763  |
| 1,50    | СН              | 1 702  |
|         |                 | 1.702, |
|         |                 | 1.530; |
|         |                 | 1.466  |
|         | HN              | 7.784  |
|         | НВ              | 2.870  |
| C ~ 5 7 | HA              | 4.563  |
| Ch31    | CH <sub>2</sub> | 1.993; |
|         |                 | 1.884; |
|         |                 | 1.775  |
|         | HN              | 8.231  |
|         | HB              | 2 858  |
|         |                 | 2.000  |
| CoDQ    |                 | 4.403  |
| Срка    |                 | 2.097; |
|         | CH <sub>2</sub> | 1.893; |
|         |                 | 1.625; |
|         |                 | 1.547  |
|         | HN              | 8.509  |
| 6- 0    | HA              | 4.503  |
| Ser9    |                 | 3.921: |
|         | HB              | 3,881  |
|         | ны              | 8 5/12 |
| ala10   |                 | 0.342  |
| OTPIP   |                 | 4.322  |
|         | НВ              | 1.398  |
|         | HN              | 7.551  |
|         | HB              | 2.842  |
|         | HA              | 4.377  |
| CpS11   | S11             | 2.014; |
|         |                 | 1.923: |
|         | CH <sub>2</sub> | 1.810: |
|         |                 | 1 559  |
|         | ЦИ              | 7.000  |
|         |                 | 7.022  |
|         | НВ              | 2.947  |
| CpS12   | HA HA           | 4.401  |
|         |                 | 1.924; |
|         | CH <sub>2</sub> | 1.855; |

|                 |                 | 1.702  |
|-----------------|-----------------|--------|
|                 | HN              | 7.622  |
| CpS13           | HB              | 2.868  |
|                 | HA              | 4.472  |
|                 |                 | 2.037; |
|                 | CI I            | 1.938; |
|                 | CH <sub>2</sub> | 1.884; |
|                 |                 | 1.646  |
|                 | HN              | 8.312  |
| ala14           | HA              | 4.336  |
|                 | CH₃             | 1.364  |
|                 | HN              | 8.253  |
| 6 45            | HA              | 4.339  |
| Ser15           |                 | 3.932; |
|                 | НВ              | 3.847  |
|                 | HN              | 7.717  |
|                 | HB              | 2.948  |
|                 | НА              | 4 468  |
| CpR16           |                 | 1 992  |
|                 | СНа             | 1 870. |
|                 |                 | 1 630  |
|                 | ЦИ              | 8 162  |
|                 |                 | 2 916  |
|                 |                 | 2.810  |
|                 | НА              | 4.414  |
| CpS17           |                 | 1.850; |
|                 | CI I            | 1.796; |
|                 |                 | 1.721; |
|                 |                 | 7.591; |
|                 | 1181            | 1.506  |
|                 | HN              | 8.063  |
| lys18           | HA              | 4.013  |
|                 | CH <sub>2</sub> | 1.558; |
|                 |                 | 1.494  |
|                 | HN              | 8.425  |
|                 | HA              | 4./12  |
| Tyr19           | НВ              | 3.325; |
|                 |                 | 2.736  |
|                 | Harom           | 6.744; |
|                 |                 | 7.120  |
|                 | HN              | 7.738  |
|                 | НВ              | 2.895  |
| CpR20           | HA              | 4.524  |
| -1              |                 | 2.025; |
|                 | CH <sub>2</sub> | 1.786; |
|                 |                 | 1.625  |
|                 | HN              | 8.328  |
|                 | НВ              | 2.849  |
|                 | HA              | 4.482  |
| CnR21           |                 | 2.085; |
| ChU21           |                 | 1.890; |
|                 | CH <sub>2</sub> | 1.799; |
|                 |                 | 1.632; |
|                 |                 | 1.557  |
|                 | HN              | 8.568  |
|                 | HA              | 4.445  |
| glu22           |                 | 2.245; |
| -1              |                 | 2.034  |
|                 | СООН            | 2.514  |
|                 | HN1             | 7.925  |
| NH <sub>2</sub> | HN2             | 7.205  |
|                 |                 | 1      |

 Table S9. NOESY contacts for peptide 13.

| Sequential ( <i>i,</i><br><i>i</i> -1) | Intensity |  |
|----------------------------------------|-----------|--|
| HN2 – HA1                              | S         |  |

| HN3 – HA2 | S |
|-----------|---|
| HN4 – HB3 | S |

| HN5 – HB4   | S |
|-------------|---|
| HN6 – HA5   | S |
| HN7 – HA6   | S |
| HN8 – HB7   | S |
| HN9 – HB8   | S |
| HN10 – HA9  | S |
| HN11 – HA10 | S |
| HN12 – HB11 | S |
| HN13 – HB12 | S |
| HN14 – HB13 | S |
| HN15 – HA14 | S |
| HN16 – HA15 | S |
| HN17 – HB16 | S |
| HN18 – HB17 | S |
| HN19 – HA18 | S |
| HN20 – HA19 | S |
| HN21 – HB20 | S |
| HN22 – HB21 | S |
| HN1-HA22    | S |
| HN2 - HA22  | W |

| NH-HN       | Intensity |
|-------------|-----------|
| HN3 – HN2   | W         |
| HN5 – HN4   | М         |
| HN7 – HN6   | М         |
| HN9 – HN8   | W         |
| HN11 – HN10 | М         |
| HN14 - HN13 | W         |
| HN16 – HN15 | М         |
| HN18 – HN17 | М         |
| HN20 – HN19 | М         |
| HN21 – HN20 | W         |
| HN22 – HN1  | W         |
| HN16 – HN14 | W         |

| Medium<br>range ( <i>i, i</i> -2) | Intensity |  |
|-----------------------------------|-----------|--|
| NH4 – HA2                         | W         |  |
| CH <sub>2</sub> 4 - HA2           | М         |  |
| NH5 - HA3                         | М         |  |
| HB5 - HB3                         | М         |  |
| NH7 – HA5                         | М         |  |
| HB9 - HB7                         | M         |  |

| NH11 – HA9                | М |
|---------------------------|---|
| CH <sub>2</sub> 11 - HB9  | W |
| NH12 – HB10               | W |
| NH16 - HB14               | W |
| HB16 - HB14               | W |
| NH17 – HA15               | W |
| HB17 - HB15               | М |
| NH18 – HB16               | М |
| NH19 – HA17               | W |
| NH20 – HA18               | М |
| CH <sub>2</sub> 21 - HA19 | М |
| HA21 - HB19               | M |
| NH22 – HB20               | М |

| Medium<br>range (i, i-3)  | Intensity |
|---------------------------|-----------|
| HA12 – HB9                | W         |
| HB15 – HA12               | W         |
| HB15 - CH <sub>2</sub> 12 | W         |
| HN18 – HB15               | W         |
| HA19 – HB16               | W         |

| Long range (i,<br>i-4) | Intensity |
|------------------------|-----------|
| HB9 – HA5              | W         |
| HN18 – HA14            | W         |
| HN22 – HA18            | W         |

| <sup>3</sup> J <sub>HN-HA</sub> [Hz] |        |  |
|--------------------------------------|--------|--|
| HN2                                  | 7.387  |  |
| HN4                                  | 8.829  |  |
| HN7                                  | 8.108* |  |
| HN8                                  | 8.889  |  |
| HN10                                 | 6.847  |  |
| HN11                                 | 7.988  |  |
| HN12                                 | 8.228* |  |
| HN13                                 | 8.288  |  |
| HN15                                 | 7.868  |  |
| HN17                                 | 9.489  |  |
| HN18                                 | 5.165  |  |
| HN22                                 | 7.567  |  |

### Table S10. NMR chemical shifts assignments for peptide 14.

|         |        | Chemical | Ac1  | HA | 1.846 |
|---------|--------|----------|------|----|-------|
| Residue | Proton | shift    | ala2 | HN | 8.041 |
|         |        | [ppm]    | dldZ | HA | 4.043 |

|       | НВ              | 1.161  |
|-------|-----------------|--------|
|       | HN              | 7.706  |
|       | НВ              | 4.187  |
| 6-62  | HA              | 2.663  |
| CpS3  |                 | 1.447; |
|       | CH <sub>2</sub> | 1.653; |
|       | _               | 1.824  |
|       | HN              | 7.384  |
|       | НВ              | 4.086  |
|       | HA              | 2.668  |
| CpR4  |                 | 1.288; |
| -     |                 | 1.441; |
|       | CH <sub>2</sub> | 1.650; |
|       |                 | 1.769  |
|       | HN              | 8.020  |
|       | HA              | 4 .282 |
|       |                 | 2.798; |
| Tyr5  | НВ              | 2.846  |
| -     |                 | 6.968; |
|       | HD              | 6.687  |
|       | HE              | 7.476  |
|       | HN              | 8.007  |
| ala6  | НА              | 3.954  |
|       | НВ              | 0.949  |
|       | HN              | 7.341  |
|       | НВ              | 4.236  |
|       | HA              | 2.657  |
| CpS7  |                 | 1.428: |
|       | CH <sub>2</sub> | 1.663: |
|       |                 | 1.772  |
|       | HN              | 7.666  |
|       | НВ              | 4.107  |
|       | НА              | 2.721  |
| CpR8  |                 | 1.369: |
|       |                 | 1.457: |
|       | CH <sub>2</sub> | 1.639; |
|       |                 | 1.731  |
|       | HN              | 8.044  |
| Ser9  | HA              | 4.347  |
|       | НВ              | 3.696  |
|       | HN              | 8.172  |
| ala10 | НА              | 4.124  |
|       | НВ              | 1.163  |
|       | HN              | 7.695  |
|       | НВ              | 4.183  |
| CpR11 | НА              | 2,779  |
|       | CH <sub>2</sub> | 1.713  |
|       | HN              | 7 492  |
|       | HR              | 4 119  |
|       |                 | 7.113  |
| CnR12 |                 | 2.305  |

|        |                 | 1.400;  |
|--------|-----------------|---------|
|        | CH <sub>2</sub> | 1.611;  |
|        |                 | 1.750   |
|        | HN              | 7.447   |
|        | НВ              | 4.072   |
|        | НА              | 2,562   |
| CpS13  |                 | 1 402.  |
|        |                 | 1 475   |
|        | CH <sub>2</sub> | 1 646   |
|        |                 | 1.778   |
|        | HN              | 7.621   |
|        | НВ              | 4 110   |
| CpR14  | НА              | 2 728   |
|        |                 | 2.720   |
|        |                 |         |
|        | HIN             | 8.109   |
|        |                 | 4.031   |
|        | НВ              | 1.266   |
| Lys15  | HD              | 0.8889; |
|        |                 | 0.9723  |
|        | HG              | 1.366   |
|        | HE              | 2.693   |
|        | HN              | 8.191   |
|        | HA              | 4.454   |
|        | ЦВ              | 2.642;  |
| tyr16  | ПВ              | 3.018   |
|        | ЦП              | 6.983;  |
|        | по              | 6.666   |
|        | HE              | -       |
|        | HN              | 7.631   |
|        | HB              | 4.234   |
|        | HA              | 2.662   |
| CpS17  |                 | 1.342;  |
|        | CU              | 1.443;  |
|        |                 | 1.633;  |
|        |                 | 1.753   |
|        | HN              | 7.558   |
|        | НВ              | 4.168   |
|        | HA              | 2.753   |
|        |                 | 1.369:  |
| CpR18  |                 | 1.456;  |
|        | CH <sub>2</sub> | 1.650:  |
|        |                 | 1.720;  |
|        |                 | 1.781   |
|        | HN              | 8.161   |
| Ser19  | НА              | 4.324   |
|        | НВ              | 3.718   |
|        | HN              | 8,402   |
| ala20  | НА              | 4 1 2 9 |
| 0.020  | HR              | 1 257   |
|        | HNI1            |         |
| $NH_2$ |                 | -       |
|        |                 |         |

### Table S11. NOESY contacts for peptide 14.

| Sequential ( <i>i</i> , <i>i</i> -1) | Intensity |
|--------------------------------------|-----------|
| 2HN – 1HA                            | М         |
| 3HN – 2HA                            | S         |

| 4HN – 3HB | S |
|-----------|---|
| 4HN – 3HA | S |
| 5HN – 4HB | М |

\_

| 5HN – 4HA   | M        |
|-------------|----------|
| 5HA – 4HN   | М        |
| 5HB – 4HN   | М        |
| 6HN – 5HA   | S        |
| 6HA – 5HB   | S        |
| 6HA – 5HD   | S        |
| 6HB – 5HD   | S        |
| 6HB – 5HE   | S        |
| 6HA – 5HE   | S        |
| 7HN – 6HA   | S        |
| 7HN – 6HB   | S        |
| 7HA – 6HB   | S        |
| 8HN – 7HB   | M        |
| 8HN – 7HA   | S        |
| 8HB – 7HN   | s        |
|             | M        |
|             | rvi<br>c |
|             | 5        |
| 10HN - 9HA  | 5        |
| 10HN - 9HB  | 5        |
| 10HB - 9HN  | VV .     |
| 11HN - 10HA | 5        |
| 11HN – 10HB | S        |
| 12HN – 11HA | S        |
| 12HN – 11HB | M        |
| 12HG – 11HA | S        |
| 13HN – 12HA | S        |
| 13HN – 12HB | S        |
| 14HN – 13HA | S        |
| 14HA – 13HN | S        |
| 15HN – 14HB | S        |
| 15HN – 14HB | W        |
| 15HA – 14HN | W        |
| 16HN – 15HA | S        |
| 16HB – 15HB | S        |
| 16HN – 15HB | W        |
| 16HD – 15HB | W        |
| 16HD – 15HG | W        |
| 16HE – 15HG | W        |
| 16HE – 15HE | w        |
| 16HD – 15HE | w        |
| 17HN – 16HA | S        |
| 17HN – 16HB | M        |
| 17HG – 16HN | s        |
| 17HN – 16HF | M        |
| 17HG - 16HF | M        |
| 18HN - 17HA | c        |
|             | 3        |
|             | c vv     |
|             | 3        |
|             | VV V     |
| 20HN - 19HA | VV V     |
| 20HN – 19HB | W        |

| NH-HN     | Intensity |
|-----------|-----------|
| 2HN – 3HN | S         |
| 4HN – 5HN | S         |
| 6HN – 7HN | S         |
| 7HN – 8HN | S         |
| 8HN – 9HN | М         |

| 9HN – 10HN  | М |
|-------------|---|
| 10HN – 11HN | М |
| 13HN - 14HN | М |
| 14HN – 15HN | М |
| 15HN – 16HN | М |
| 16HN-17HN   | S |
| 18HN-19HN   | М |

| Middle range (i, i-2) | Intensity |
|-----------------------|-----------|
| 5HN – 3HB             | W         |
| 5HD – 3HB             | W         |
| 7HN – 5HA             | W         |
| 8HN – 6HB             | W         |
| 8HA – 6B              | W         |
| 9HN – 7HB             | W         |
| 11HN – 9HB            | W         |
| 12HN – 10HB           | М         |
| 15HB – 13HA           | W         |
| 15HD – 13HA           | W         |
| 16HD – 14HB           | S         |
| 16HD – 14HG           | S         |
| 17HN – 15HA           | W         |
| 17HN – 15HB           | W         |
| 18HN – 16HA           | W         |
| 19HN – 17HB           | М         |

| Middle range (i, i-3) | Intensity |
|-----------------------|-----------|
| 6HA – HN3             | W         |
| 8HA – HD5             | W         |
| 9HN – 6HB             | W         |
| 14HA – 11HN           | W         |
| 15HN – 12HA           | W         |

| <sup>3</sup> J <sub>HN-HA</sub> [Hz] |      |  |  |
|--------------------------------------|------|--|--|
| HN4                                  | 8.17 |  |  |
| HN7                                  | 8.29 |  |  |
| HN8                                  | 8.17 |  |  |
| HN12                                 | 8.53 |  |  |
| HN13                                 | 7.81 |  |  |
| HN15                                 | 6.13 |  |  |
| HN18                                 | 8.35 |  |  |











**Figure S8.** Structural formulas for peptides **8** (A), **9** (B), **12** (C), **13** (D) and **14** (E). The arrows indicate regular non-sequential contacts found in ROESY or NOESY spectra. The coloring of arrows is consistent and indicates contacts between particular atom types, e.g. (1R,2S)-ACPC-C $\alpha$ (i) – (S)-aa-HN(i+2) is colored dark blue.

| Table S12. NMF | R calculation | statistics f | or the | biggest | clusters. |
|----------------|---------------|--------------|--------|---------|-----------|
|----------------|---------------|--------------|--------|---------|-----------|

| Cluster                                           | 1                          | 2     | 3     |  |  |
|---------------------------------------------------|----------------------------|-------|-------|--|--|
| Total number of NOE restraints                    | 80                         |       |       |  |  |
| (i, i+1)                                          | 60                         |       |       |  |  |
| (i, i+2)                                          | 15                         |       |       |  |  |
| (i, i+3)                                          | 5                          |       |       |  |  |
| Number of members                                 | 25 (25%) 16 (16%) 13 (13%) |       |       |  |  |
| Average number of NOE violations per structure    | 12.1                       | 10.5  | 9.6   |  |  |
| Average amount of NOE violation per structure [Å] | 3.3                        | 3.2   | 2.5   |  |  |
| Average RMSD for Cα [Å]                           | 0.256                      | 0.256 | 0.229 |  |  |



**Figure S9.** Average structure of cluster 1 (left) and superimposition of the 5 lowest energy structures of cluster 1 (right).



**Figure S10.** Average structure of cluster 2 (left) and superimposition of the 5 lowest energy structures of cluster 2 (right).



**Figure S11**. Average structure of cluster 3 (left) and superimposition of the 5 lowest energy structures of cluster 3 (right).

**Table S13**. Distances between active site residues calculated for 3 clusters (five top energystructures). RMSD are given as errors.

| Distance [Å]        | Cluster 1  | Cluster 2  | Cluster 3  | RA95.5-8F     |
|---------------------|------------|------------|------------|---------------|
|                     |            |            |            | (PDB id 5AN7) |
| Tyr16(CA)-Tyr5(CA)  | 14.6 ± 0.8 | 14.9 ± 1.0 | 12.2 ± 1.3 | 12.4          |
| Tyr16(OH)-Tyr5(OH)  | 10.8 ± 3.1 | 14.5 ± 4.9 | 10.1 ± 1.4 | 2.7           |
| Tyr16(CA)-Lys15(CA) | 3.8 ± 0.0  | 3.7 ± 0.0  | 3.8 ± 0.0  | 8.2           |
| Tyr16(OH)-Lys15(NZ) | 7.1 ± 1.2  | 7.7 ± 0.8  | 7.6 ± 1.4  | 4.3           |
| Tyr5(CA)-Lys15(CA)  | 11.9 ± 0.7 | 12.2 ± 0.9 | 10.2 ± 0.9 | 14.7          |
| Tyr5(OH)-Lys15(NZ)  | 7.9 ± 3.8  | 14.4 ± 1.3 | 7.7 ± 2.6  | 3.2           |





Figure S12. Analytical HPLC chromatograms for analyzed peptides.