Metal doped black In₂O₃ for atmospheric pressure CO₂ photothermal reduction with high efficiency and selectivity

Yang Yang^{a,b,1,*}, Liqiang Zhang^{b,1}, Jiaben Wang^a, Hao Song^a, Xiao Zhang^a, Xiang

Gao^{a,b,*}

^aState Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China

^bInstitute of Carbon Neutrality, Zhejiang University, Hangzhou 310027, PR China

*Corresponding Authors

¹Co-first authors

DFT calculations

Spin-polarized DFT calculations were performed using the Vienna ab initio simulation package (VASP).^{1,2} The generalized gradient approximation proposed by Perdew, Burke, and Ernzerhof (GGA-PBE) is selected for the exchange-correlation potential.³ The pseudo-potential was described by the projector-augmented-wave (PAW) method.⁴ To accurately describe the dispersion interaction, we use DFT-D3 method with Becke-Jonson damping for dispersion correction.⁵ The geometry optimization was performed until the Hellmann–Feynman force on each atom is smaller than 0.02 eV·Å⁻¹. The energy criterion was set to 10⁻⁴ eV in the iterative solution of the Kohn-Sham equation. The Brillouin zone was sampled with $2\times 2\times 1$ Monkhorst-Pack k-point mesh, and a Gaussian smearing of 0.05 eV was applied to speed up electronic convergence. Based on a computational hydrogen electrode (CHE) model proposed by Nørskov and co-workers,^{6,7} the Gibbs reaction free energy (Δ G) for CO₂ reduction was defined as,

$\Delta G = \Delta E + \Delta Z P E - T \Delta S$

where ΔE is the change of electronic energy, ΔZPE is the change of zero point energy, T is the system temperature (298.15 K), ΔS is the change of entropy, respectively. Under the potential of 0 V vs. RHE, the CHE method relates the chemical of protonelectron pairs ($H^+ + e^-$) as 1/2 H₂ (g). A vacuum height of 15 Å along the vertical direction was selected to avoid the unwanted interaction between the slab and its period images.

The dimension of the optimized cubic In_2O_3 model consist of 72 O atoms and 48 In atoms, and the Cu-In₂O_{3-x} model consist of 65 O atoms,48 In atoms and 3 Cu atoms. distributed in three In-O-In tri-layers. In the calculation, the oxygen vacancy near the Cu atom is used as the active site for the Cu-In₂O_{3-x} system, and In is used as the active site for the In₂O₃ system.

- 1. G. Kresse, J. Hafner, Phys. Rev. 1993, 47, 558.
- 2. G. Kresse, J. Furthmuller, Phys. Rev. 1996, 54, 11169.
- 3. J. P. Perdew, K. Burke, Phys., Rev. Lett. 1996, 77, 3865.
- 4. P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 5. S. Grimme, S. Ehrlich, L. Goerigk. J. Comput. Chem. 2011, 32, 1456.
- 6. R. A. Alberty, J. Biol. Chem., 1969, 244, 3290-3302.
- J. Rossmeisl, J. K. Nørskov, C. D. Taylor, M. J. Janik, M. Neurock, J. Phys. Chem. B, 2006, 110, 21833-21839.

Fig. S1 Digital pictures of In_2O_{3-x} treated with H_2 at (a) 25°C, (b) 200°C, (c) 300°C and (d) 400°C.

Fig. S2 SEM images of In_2O_{3-x} treated with H_2 at (a-b) 25°C, (c-d) 200°C, (e-f) 300°C and (g-h) 400°C.

Fig. S3 (a) SEM image of Cu-In₂O_{3-x}. (b) and (c) are TEM and the corresponding mapping images of Cu-In₂O_{3-x}.

Fig. S4 XPS spectra of O 1s of In_2O_{3-x} treated with H_2 at different temperatures.

Fig. S5 XPS spectra of Cu 2p of Cu- In_2O_{3-x} .

Fig. S6 CO yield and selectivity of Cu-In₂O_{3-x} at 300°C for 12 h.

Fig. S7 Comparison of photothermal and thermal catalytic activities of In_2O_{3-x} treated with H₂ at (a) 25°C, (b)200°C, (c) 300°C, (d) 400°C.

Fig. S8 Photothermal catalytic performance of In_2O_{3-x} treated with H₂ at different temperatures at reaction temperature of 300°C.

Fig. S9 (a) SEM image of Ru-In₂O_{3-x}, (b) and (c) are TEM and the corresponding mapping images. (d) SEM image of Pt-In₂O_{3-x}, (e) and (f) are TEM and the corresponding mapping images. (g) SEM image of Rh-In₂O_{3-x}, (h) and (i) are TEM and the corresponding mapping images.

Fig. S10 (a) XPS spectra of O 1s of In_2O_{3-x} doped with different metals. (b) CO₂-TPD spectra of different metal doped In_2O_{3-x} .

Fig. S11 UV-visible diffuse reflectance spectrums (a) and band gap (b) of different metal doped In_2O_{3-x} .

Fig. S12 N₂ adsorption desorption curves of different metal doped In₂O_{3-x}.

Samples	$\mathbf{S}_{\mathrm{BET}}$	Pore volume	Pore diameter	Loading
	(m^{2}/g)	(cm^{3}/g)	(nm)	(%)
In ₂ O _{3-x} 400°C	7.31	0.020	11.52	0
Cu-In ₂ O _{3-x}	23.75	0.230	38.76	2.06
Ru-In ₂ O _{3-x}	33.72	0.178	32.71	1.97
Pt-In ₂ O _{3-x}	26.06	0.198	30.36	1.99
Rh-In ₂ O _{3-x}	26.82	0.236	35.23	2.09

Table S1 Specific surface area, pore characteristics and loading capacity of catalysts.