Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting information

Insights into the photocatalytic mechanism of g- C_3N_4/Cs_2BBr_6 (B = Pt, Sn, Ti) heterojunction photocatalysts by density functional theory calculations

Xinyu Ye^{a,b}, Yuanmiao Sun^{b,*}, Anmin Liu^{c,*}, Shizheng Wen^d, and Tingli Ma^{a,*}

^a Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4

Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan.

Email: tinglima@life.kyutech.ac.jp

^b Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology,

Chinese

Academy of Sciences, Shenzhen 518055, China.

Email: sunym@siat.ac.cn

° State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of

Technology, China.

Email: liuanmin@dlut.edu.cn

^d School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huai'an, 223300, China.

Fig. S1 Theoretical models for (a, b) $g-C_3N_4/Cs_2PtBr_6$, (c, d) $g-C_3N_4/Cs_2SnBr_6$, and (e, f) $g-C_3N_4/Cs_2TiBr_6$ heterojunctions.

Fig. S2 Optimized geometric structures of (a) $g-C_3N_4/Cs_2PtBr_6(001)$ heterostructure with Ptterminated surface, (b) $g-C_3N_4/Cs_2SnBr_6(001)$ heterostructure with Cs-terminated surface, (c) $g-C_3N_4/Cs_2TiBr_6(001)$ heterostructure with Cs-terminated surface, (d) $g-C_3N_4/Cs_2PtBr_6(110)$ heterostructure, (e) $g-C_3N_4/Cs_2PtBr_6(111)$ heterostructure, (f) $g-C_3N_4/Cs_2SnBr_6(110)$ heterostructure, (g) $g-C_3N_4/Cs_2SnBr_6(111)$ heterostructure, (h) $g-C_3N_4/Cs_2TiBr_6(110)$ heterostructure and (i) $g-C_3N_4/Cs_2TiBr_6(111)$ heterostructure.

Fig. S3 Calculated TDOS and PDOS of (a) monolayer g-C₃N₄, (b) Cs₂PtBr₆(001) slab, (c) Cs₂SnBr₆(001) slab, (d) Cs₂TiBr₆(001) slab over a wider energy range (-20 eV to 20 eV). The black vertical line is Fermi level.

Fig. S4 Band structures and density of states of the (a) $g-C_3N_4$, (b) Cs_2PtBr_6 , (c) Cs_2SnBr_6 , (d) Cs_2TiBr_6 calculated by PBE functional.

Species	(001) plane	(110) plane	(111) plane	Pt-terminated
Binding energy (eV)	-4.25	-3.86	-3.08	-3.82
Mismatch energy (eV)	4.15	4.22	4.65	4.47

Table. S1 Binding energies (eV) of $g-C_3N4/Cs_2PtBr_6$ heterojunctions with varying Cs_2PtBr_6 components.

Table. S2 Binding energies (eV) of $g-C_3N4/Cs_2SnBr_6$ heterojunctions with varying Cs_2SnBr_6 components.

Species	(001) plane	(110) plane	(111) plane	Cs- terminated
Binding energy (eV)	-1.65	-1.01	-1.50	-1.60
Mismatch energy (eV)	10.26	11.28	10.36	10.31

Table. S3 Binding energies (eV) of $g-C_3N4/Cs_2TiBr_6$ heterojunctions with varying Cs_2TiBr_6 components.

Species	(001) plane	(110) plane	(111) plane	Cs- terminated
Binding energy (eV)	-2.88	-2.27	-2.00	-2.80
Mismatch energy (eV)	6.26	6.66	7.05	6.35

Table. S4 Average Bader atomic charge (e), the minimum distance (Min dist. (Å)), and valency in isolated Cs_2PtBr_6 and $g-C_3N_4$.

Atom	С	Ν	Cs	Pt	Br
Average Bader charge (e)	0.64	7.47	8.04	9.52	7.55
Valency	3.36	-2.47	0.96	0.48	-0.55

Table. S5 Average Bader atomic charge (e), the minimum distance (Min dist. (Å)), and valency in isolated Cs_2SnBr_6 and $g-C_3N_4$.

Atom	С	Ν	Cs	Sn	Br
Average Bader charge (e)	0.88	7.20	8.01	11.92	7.90
Valency	3.12	-2.20	0.99	2.08	-0.90

Table. S6 Average Bader atomic charge (e), the minimum distance (Min dist. (Å)), and valency in isolated Cs_2TiBr_6 and $g-C_3N_4$.

Atom	С	Ν	Cs	Ti	Br
Average Bader charge (e)	0.94	7.17	8.01	7.89	7.94
Valency	3.06	-2.17	0.99	2.11	-0.94