Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

## **Supplementary Information**

## Microkinetic Simulations of Ketene Conversion to Olefins in H-SAPO-34 Zeolite for Bifunctional Catalysis

Jun Ke, Yang-Dong Wang, Chuan-Ming Wang\*, Zai-Ku Xie\*

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology Co. Ltd., Shanghai 201208, China

\*E-Mail: wangcm.sshy@sinopec.com; xzk@sinopec.com

|     | Elementary step                                          | $\Delta E / eV$ | $E_{\rm a}$ / eV | $k_{\rm fwd}$ / ${ m s}^{-1}$ | $k_{ m bkw}$ / s <sup>-1</sup> |
|-----|----------------------------------------------------------|-----------------|------------------|-------------------------------|--------------------------------|
| R1  | $CH_2CO \cdot HZ = CH_3COZ$                              | -0.42           | 0.03             | 2.4×10 <sup>11</sup>          | 6.4×10 <sup>9</sup>            |
| R2  | $C_2H_4 \cdot CH_3COZ = CO \cdot \swarrow Z$             | 0.06            | 2.01             | 3.2×10 <sup>-2</sup>          | $8.8 \times 10^{-1}$           |
| R3  | $C_3H_6 \cdot CH_3COZ = CO \cdot \frac{1}{Z}$            | 0.18            | 1.86             | 1.5×10 <sup>-1</sup>          | 4.4×10 <sup>2</sup>            |
| R4  | $C_3H_6 \cdot CH_3COZ = CO \cdot \angle Z$               | 0.43            | 1.86             | 1.5×10 <sup>-1</sup>          | 2.9×10 <sup>4</sup>            |
| R5  | $\cdot CH_3COZ = CO \cdot \cdot Z^-$                     | 0.58            | 1.72             | 2.3×10 <sup>1</sup>           | 8.2×10 <sup>2</sup>            |
| R6  | $\checkmark \cdot CH_3COZ = CO \cdot \overbrace{Z}^{I}$  | 0.22            | 1.82             | $1.1 \times 10^{0}$           | 3.9×10 <sup>3</sup>            |
| R7  | $\checkmark \cdot CH_3 COZ = CO \cdot \checkmark Z$      | 0.45            | 1.82             | $1.1 \times 10^{0}$           | 5.9×10 <sup>4</sup>            |
| R8  | $\checkmark \cdot CH_3COZ = CO \cdot \checkmark Z$       | 0.69            | 1.68             | 1.4×10 <sup>1</sup>           | 3.0×10 <sup>5</sup>            |
| R9  | $\cdot CH_3COZ = CO \cdot \cdot Z^-$                     | 0.44            | 1.62             | 2.1×10 <sup>1</sup>           | 8.8×10 <sup>1</sup>            |
| R10 | $\cdot$ CH <sub>3</sub> COZ = CO $\cdot$ Z               | 0.60            | 1.62             | $2.1 \times 10^{1}$           | 1.2×10 <sup>7</sup>            |
| R11 | $\cdot CH_3COZ = CO \cdot \cdot Z^-$                     | 0.56            | 1.62             | 1.3×10 <sup>1</sup>           | 1.4×10 <sup>3</sup>            |
| R12 | $\cdot$ CH <sub>3</sub> COZ = CO $\cdot$ Z               | 0.95            | 1.62             | 1.3×10 <sup>1</sup>           | 7.2×10 <sup>5</sup>            |
| R13 | $\cdot CH_3COZ = CO \cdot \frac{1}{Z}$                   | 0.66            | 1.78             | $1.8 \times 10^{0}$           | 1.7×10 <sup>4</sup>            |
| R14 | $\cdot CH_3COZ = CO \cdot Z$                             | 0.69            | 1.78             | $1.8 \times 10^{0}$           | 7.6×10 <sup>6</sup>            |
| R15 | $\checkmark \cdot CH_3 COZ = CO \cdot \underbrace{Z}_{}$ | 0.27            | 1.81             | 3.1×10 <sup>-1</sup>          | 1.3×10 <sup>4</sup>            |
| R16 | $\checkmark CH_3COZ = CO \cdot \checkmark Z$             | 0.43            | 1.81             | 3.1×10 <sup>-1</sup>          | 7.3×10 <sup>4</sup>            |
| R17 | $\checkmark \cdot CH_3COZ = CO \cdot \checkmark_Z$       | 0.81            | 1.74             | 2.3×10 <sup>-1</sup>          | 2.6×10 <sup>5</sup>            |
| R18 | $\checkmark \cdot CH_3COZ = CO \cdot \checkmark Z$       | 0.86            | 1.74             | 2.3×10 <sup>-1</sup>          | 1.8×10 <sup>6</sup>            |
| R19 | $\cdot CH_3COZ = CO \cdot \cdot Z^-$                     | 0.37            | 1.69             | 4.6×10 <sup>0</sup>           | 3.0×10 <sup>1</sup>            |
| R20 | $\cdot CH_3COZ = CO \cdot \angle Z$                      | 0.63            | 1.69             | 4.6×10 <sup>0</sup>           | 5.1×10 <sup>6</sup>            |
| R21 | $\cdot CH_{3}COZ = CO \cdot \cdot \cdot Z^{-}$           | 0.52            | 1.55             | 1.8×10 <sup>2</sup>           | 2.2×10 <sup>5</sup>            |
| R22 | $\cdot CH_3COZ = CO \cdot \cdot Z^-$                     | 0.49            | 1.70             | $1.2 \times 10^{1}$           | 3.3×10 <sup>1</sup>            |

**Table S1.** Reaction energies ( $\Delta E$ ) and energy barriers ( $E_a$ ) at 0 K, forward rate constants ( $k_{fwd}$ ) and backward rate constants ( $k_{bkd}$ ) at 673 K of the involved elementary steps for the conversion of ketene to olefins in H-SAPO-34.

|     | Elementary step                                                                   | $\Delta E / eV$ | $E_{\rm a}$ / eV | $k_{\rm fwd}$ / s <sup>-1</sup> | $k_{ m bkw}$ / s <sup>-1</sup> |
|-----|-----------------------------------------------------------------------------------|-----------------|------------------|---------------------------------|--------------------------------|
| R23 | $\cdot$ CH <sub>3</sub> COZ = CO·                                                 | 0.74            | 1.70             | 1.2×10 <sup>1</sup>             | 1.2×10 <sup>7</sup>            |
| R24 | $\cdot CH_3COZ = CO \cdot \cdot \cdot Z^-$                                        | 0.60            | 1.74             | 7.6×10 <sup>-1</sup>            | 5.4×10 <sup>2</sup>            |
| R25 | $\cdot$ CH <sub>3</sub> COZ = CO $\cdot$                                          | 0.58            | 1.74             | 7.6×10 <sup>-1</sup>            | 3.5×10 <sup>5</sup>            |
| R26 | $\cdot CH_3COZ = CO \cdot \frac{1}{Z}$                                            | 0.88            | 1.57             | 2.3×10 <sup>1</sup>             | 4.4×10 <sup>4</sup>            |
| R27 | $\cdot CH_3COZ = CO \cdot \cdot Z^-$                                              | 0.50            | 1.57             | 2.3×10 <sup>1</sup>             | 3.2×10 <sup>3</sup>            |
| R28 | $\cdot CH_3COZ = CO \cdot \frac{1}{Z}$                                            | 0.72            | 1.77             | 6.2×10 <sup>-1</sup>            | 1.7×10 <sup>1</sup>            |
| R29 | $\cdot$ CH <sub>3</sub> COZ = CO $\cdot$                                          | 0.44            | 1.77             | 6.2×10 <sup>-1</sup>            | 2.4×10 <sup>4</sup>            |
| R30 | $\cdot$ CH <sub>3</sub> COZ = CO $\cdot$                                          | 0.73            | 1.81             | $1.1 \times 10^{0}$             | 3.9×10 <sup>3</sup>            |
| R31 | $CH_{3}COZ = CO \cdot \checkmark Z$                                               | 0.68            | 1.81             | $1.1 \times 10^{0}$             | 4.3×10 <sup>5</sup>            |
| R32 | $\cdot CH_3COZ = CO \cdot \cdot Z^-$                                              | 0.46            | 1.60             | 2.7×10 <sup>1</sup>             | 9.4×10 <sup>2</sup>            |
| R33 | $\cdot CH_3 COZ = CO \cdot \checkmark \downarrow \downarrow \downarrow \cdot Z^-$ | 1.02            | 1.60             | 2.7×10 <sup>1</sup>             | 2.4×10 <sup>5</sup>            |
| R34 | $\cdot$ CH <sub>3</sub> COZ = CO $\cdot$                                          | 0.45            | 1.84             | 2.6×10 <sup>-1</sup>            | 9.1×10 <sup>3</sup>            |
| R35 | $\cdot$ CH <sub>3</sub> COZ = CO $\cdot$ $Z$                                      | 0.35            | 1.84             | 2.6×10 <sup>-1</sup>            | 3.6×10 <sup>3</sup>            |
| R36 | $\cdot CH_{3}COZ = CO \cdot \downarrow \downarrow \cdot Z^{-}$                    | 0.85            | 1.75             | 4.5×10 <sup>0</sup>             | 1.6×10 <sup>5</sup>            |
| R37 | $\cdot$ CH <sub>3</sub> COZ = CO $\cdot$                                          | 1.03            | 1.75             | 4.5×10 <sup>0</sup>             | 4.3×10 <sup>6</sup>            |
| R38 | $\checkmark \cdot CH_3COZ = CO \cdot _Z$                                          | 0.14            | 1.76             | 2.0×10 <sup>0</sup>             | 7.8×10 <sup>1</sup>            |
| R39 | $\cdot CH_3 COZ = CO \cdot Z$                                                     | 0.44            | 1.76             | 2.0×10 <sup>0</sup>             | 1.3×10 <sup>4</sup>            |
| R40 | $\checkmark \cdot CH_3COZ = CO \cdot \checkmark Z$                                | 0.79            | 1.70             | 3.6×10 <sup>0</sup>             | 3.2×10 <sup>7</sup>            |
| R41 | $\bigcirc CH_3COZ = CO \bigcirc Z$                                                | 0.89            | 1.70             | 3.6×10 <sup>0</sup>             | 1.5×10 <sup>6</sup>            |
| R42 | $\cdot CH_3 COZ = CO \cdot \underbrace{Z}_{}$                                     | 0.84            | 1.76             | 5.6×10 <sup>0</sup>             | 8.9×10 <sup>4</sup>            |
| R43 | $\cdot CH_3COZ = C_8H_{16} \cdot CO \cdot HZ$                                     | -0.03           | 1.55             | 1.6×10 <sup>2</sup>             | 5.7×10 <sup>0</sup>            |

Table S1 (Continued).

|     | Elementary step                                                                                                  | $\Delta E / eV$ | E <sub>a</sub> /<br>eV | $k_{\rm fwd}$ / s <sup>-1</sup> | $k_{ m bkw}$ / s <sup>-1</sup> |
|-----|------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|---------------------------------|--------------------------------|
| R44 | $\cdot CH_3COZ = C_8H_{16} \cdot CO \cdot HZ$                                                                    | 0.05            | 1.64                   | $1.7 \times 10^{0}$             | 5.6×10 <sup>-1</sup>           |
| R45 | $\cdot$ CH <sub>3</sub> COZ = C <sub>8</sub> H <sub>16</sub> $\cdot$ CO $\cdot$ HZ                               | -0.20           | 1.36                   | 6.1×10 <sup>3</sup>             | 3.0×10 <sup>0</sup>            |
| R46 | $\cdot CH_3COZ = C_8H_{16} \cdot CO \cdot HZ$                                                                    | -0.13           | 1.77                   | 6.5×10 <sup>-1</sup>            | 2.5×10 <sup>-3</sup>           |
| R47 | $\cdot$ CH <sub>3</sub> COZ = C <sub>8</sub> H <sub>16</sub> $\cdot$ CO $\cdot$ HZ                               | -0.07           | 1.62                   | $7.4 \times 10^{0}$             | 3.2×10 <sup>-1</sup>           |
| R48 | $\cdot CH_{3}COZ = C_{8}H_{16} \cdot CO \cdot HZ$                                                                | -0.13           | 1.66                   | 1.6×10 <sup>1</sup>             | 1.6×10 <sup>-2</sup>           |
| R49 | $\cdot CH_{3}COZ = C_{8}H_{16} \cdot CO \cdot HZ$                                                                | -0.27           | 1.44                   | 1.5×10 <sup>3</sup>             | 4.1×10 <sup>-1</sup>           |
| R50 | $\cdot CH_3COZ = C_8H_{16} \cdot CO \cdot HZ$                                                                    | -0.11           | 1.60                   | 2.3×10 <sup>1</sup>             | 1.9×10 <sup>-1</sup>           |
| R51 | $\cdot CH_3COZ = C_8H_{16} \cdot CO \cdot HZ$                                                                    | -0.03           | 1.74                   | 2.4×10 <sup>0</sup>             | 2.0×10 <sup>-2</sup>           |
| R52 | $\cdot CH_3COZ = C_8H_{16} \cdot CO \cdot HZ$                                                                    | -0.17           | 1.68                   | $8.2 \times 10^{0}$             | 3.0×10 <sup>-2</sup>           |
| R53 | $\cdot CH_{3}COZ = C_{8}H_{16} \cdot CO \cdot HZ$                                                                | -0.15           | 1.65                   | $1.0 \times 10^{1}$             | 4.5×10 <sup>-2</sup>           |
| R54 | $\checkmark \cdot CH_3COZ = C_8H_{16} \cdot CO \cdot HZ$                                                         | -0.21           | 1.73                   | $3.7 \times 10^{-1}$            | 2.1×10 <sup>-3</sup>           |
| R55 | $\mathbf{\cdot} \mathbf{CH}_{3}\mathbf{COZ} = \mathbf{C}_{8}\mathbf{H}_{16} \cdot \mathbf{CO} \cdot \mathbf{HZ}$ | -0.21           | 1.70                   | $1.8 \times 10^{1}$             | $2.7 \times 10^{-2}$           |
| R56 | $C_8H_{16}$ ·CH <sub>3</sub> COZ = $C_9H_{18}$ ·CO·HZ                                                            | 0.08            | 1.57                   | $9.8 \times 10^{0}$             | $1.6 \times 10^{1}$            |
| R57 | $CH_3COZ = CO \cdot CH_3Z$                                                                                       | 0.56            | 1.96                   | $5.8 \times 10^{-1}$            | $1.7 \times 10^{0}$            |

Table S1 (Continued).

**Table S2.** Adsorption energies  $(E_{ads})$  at 0 K of the involved reactant (ketene) and products (CO and light olefins) in H-SAPO-34.

| Molecule | $E_{ m ads}$ / eV | Molecule  | $E_{\rm ads}$ / eV |
|----------|-------------------|-----------|--------------------|
| ketene   | -0.47             | 1-butene  | -0.71              |
| СО       | -0.32             | 2-butene  | -0.68              |
| ethene   | -0.42             | isobutene | -0.69              |
| propene  | -0.57             |           |                    |

|                | Olefin                        | $E_{ m f}$ / eV |          | C              | Olefin                                                                               | $E_{\rm f}$ / eV |          |
|----------------|-------------------------------|-----------------|----------|----------------|--------------------------------------------------------------------------------------|------------------|----------|
|                | precursor                     | Concerted       | Stepwise | Cn             | precursor                                                                            | Concerted        | Stepwise |
| $C_2$          | C <sub>2</sub> H <sub>4</sub> | 0.52            | 0.56     | C <sub>6</sub> | $\sim\sim$                                                                           | -2.31            | -2.17    |
| C <sub>3</sub> |                               | -0.42           | -0.35    | $C_7$          | $\downarrow$                                                                         | -3.52            | -3.23    |
| $C_4$          | $\checkmark$                  | -1.38           | -1.28    |                | $\bigwedge$                                                                          | -3.50            | -3.40    |
|                | $\sim$                        | -1.30           | -1.15    |                |                                                                                      | -3.50            | -3.37    |
|                |                               | -1.08           | -0.93    |                | $\sim$                                                                               | -3.40            | -3.25    |
| C5             | $\downarrow$                  | -2.16           | -2.01    |                | $\sim$                                                                               | -3.38            | -3.17    |
|                | $\checkmark$                  | -2.00           | -1.88    |                | $\sim$                                                                               | -3.37            | -3.29    |
|                | $\wedge$                      | -1.96           | -1.85    |                |                                                                                      | -3.32            | -3.16    |
|                |                               | -1.78           | -1.65    |                |                                                                                      | -3.30            | -3.23    |
|                |                               | -1.76           | -1.60    |                | $\sim$                                                                               | -3.28            | -3.03    |
| C <sub>6</sub> | $\triangleleft$               | -2.88           | -2.73    |                | $\sim$                                                                               | -3.24            | -3.05    |
|                |                               | -2.83           | -2.71    |                | $\downarrow$                                                                         | -3.18            | -3.08    |
|                | $\sim$                        | -2.78           | -2.50    |                | $\checkmark\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | -3.18            | -3.01    |
|                | $\sim$                        | -2.63           | -2.51    |                |                                                                                      | -3.15            | -2.95    |
|                | $\downarrow$                  | -2.62           | -2.43    | C <sub>8</sub> |                                                                                      | -4.09            | -3.96    |
|                | $\downarrow$                  | -2.60           | -2.51    |                | $\rightarrow$                                                                        | -4.05            | -3.97    |
|                | $\wedge \sim$                 | -2.59           | -2.36    |                |                                                                                      | -4.05            | -3.86    |
|                | $\sim$                        | -2.55           | -2.47    |                | $\bigwedge$                                                                          | -4.02            | -3.97    |
|                | $\sum$                        | -2.51           | -2.47    |                | $\downarrow \downarrow$                                                              | -4.02            | -3.92    |
|                |                               | -2.47           | -2.22    |                |                                                                                      | -3.99            | -3.86    |
|                | $\sim$                        | -2.41           | -2.22    |                | $\rightarrow$                                                                        | -3.93            | -3.86    |
|                | $\bigwedge$                   | -2.39           | -2.18    |                |                                                                                      |                  |          |

**Table S3.** TS formation energies ( $E_f$ ) at 0 K of the methylation steps for the conversion of ketene to olefins in H-SAPO-34. The transition states of the stepwise methylation are same to those in the conversion of methanol to olefins [Ref. S1].

| $CH_2CO(g) + T = CH_2CO \cdot T$                                                                                                                                                                                                                 | (Eq. S1)  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| $CO(g) + T = CO \cdot T$                                                                                                                                                                                                                         | (Eq. S2)  |
| $C_nH_{2n}(g) + T = C_nH_{2n} \cdot T \ (n = 2-4)$                                                                                                                                                                                               | (Eq. S3)  |
| $CH_2CO \cdot T + HB = CH_2CO \cdot HB + T$                                                                                                                                                                                                      | (Eq. S4)  |
| $CO \cdot T + HB = CO \cdot HB + T$                                                                                                                                                                                                              | (Eq. S5)  |
| $CH_2CO \cdot HB = CH_3COB$                                                                                                                                                                                                                      | (Eq. S6)  |
| $CH_3COB = CO \cdot CH_3B$                                                                                                                                                                                                                       | (Eq. S7)  |
| $CO \cdot CH_3B + T = CH_3B + CO \cdot T$                                                                                                                                                                                                        | (Eq. S8)  |
| $CO \cdot CH_3B + HB = CH_3B + CO \cdot HB$                                                                                                                                                                                                      | (Eq. S9)  |
| $C_nH_{2n} \cdot HP + CH_2CO \cdot T = C_nH_{2n} \cdot CH_2CO \cdot HP + T$                                                                                                                                                                      | (Eq. S10) |
| $C_{n}H_{2n} \cdot HP + CH_{2}CO \cdot HB = C_{n}H_{2n} \cdot CH_{2}CO \cdot HP + HB$                                                                                                                                                            | (Eq. S11) |
| $C_nH_{2n} \cdot CH_2CO \cdot HP = C_nH_{2n} \cdot CH_3COP$                                                                                                                                                                                      | (Eq. S12) |
| $C_nH_{2n} \cdot CH_3COP = CO \cdot C_{n+1}H_{2n+3}P$                                                                                                                                                                                            | (Eq. S13) |
| $\mathbf{CO} \cdot \mathbf{C}_{n+1}\mathbf{H}_{2n+3}\mathbf{P} + \mathbf{T} = \mathbf{C}_{n+1}\mathbf{H}_{2n+3}\mathbf{P} + \mathbf{CO} \cdot \mathbf{T}$                                                                                        | (Eq. S14) |
| $\mathrm{CO} \cdot \mathrm{C}_{n+1}\mathrm{H}_{2n+3}\mathrm{P} + \mathrm{HB} = \mathrm{C}_{n+1}\mathrm{H}_{2n+3}\mathrm{P} + \mathrm{CO} \cdot \mathrm{HB}$                                                                                      | (Eq. S15) |
| $C_nH_{2n} \cdot CH_3COP = C_nH_{2n} \cdot CO \cdot CH_3P$                                                                                                                                                                                       | (Eq. S16) |
| $C_nH_{2n} \cdot CO \cdot CH_3P + T = C_nH_{2n} \cdot CH_3P + CO \cdot T$                                                                                                                                                                        | (Eq. S17) |
| $C_{n}H_{2n} \cdot CO \cdot CH_{3}P + HB = C_{n}H_{2n} \cdot CH_{3}P + CO \cdot HB$                                                                                                                                                              | (Eq. S18) |
| $C_nH_{2n} \cdot HP + CH_3B = HB + C_nH_{2n} \cdot CH_3P \ (n = 2-4)$                                                                                                                                                                            | (Eq. S19) |
| $\mathbf{C}_{\mathbf{n}}\mathbf{H}_{2\mathbf{n}}\cdot\mathbf{C}\mathbf{H}_{3}\mathbf{P}=\mathbf{C}_{\mathbf{n}+1}\mathbf{H}_{2\mathbf{n}+3}\mathbf{P}$                                                                                           | (Eq. S20) |
| $C_nH_{2n+1}P = C_nH_{2n+1}P$ (isomerization)                                                                                                                                                                                                    | (Eq. S21) |
| $C_nH_{2n+1}P = C_nH_{2n} \cdot HP$                                                                                                                                                                                                              | (Eq. S22) |
| $\mathbf{C}_{m+n}\mathbf{H}_{2m+2n+1}\mathbf{P} = \mathbf{C}_m\mathbf{H}_{2m}\cdot\mathbf{C}_n\mathbf{H}_{2n}\cdot\mathbf{H}\mathbf{P}$                                                                                                          | (Eq. S23) |
| $C_{m+n}H_{2m+2n+1}P = C_mH_{2m} \cdot C_nH_{2n+1}P$                                                                                                                                                                                             | (Eq. S24) |
| $\mathbf{C}_{\mathbf{m}}\mathbf{H}_{2\mathbf{m}}\cdot\mathbf{C}_{\mathbf{n}}\mathbf{H}_{2\mathbf{n}+1}\mathbf{P} = \mathbf{C}_{\mathbf{m}}\mathbf{H}_{2\mathbf{m}}\cdot\mathbf{C}_{\mathbf{n}}\mathbf{H}_{2\mathbf{n}}\cdot\mathbf{H}\mathbf{P}$ | (Eq. S25) |
| $C_mH_{2m} \cdot C_nH_{2n} \cdot HP + T = C_mH_{2m} \cdot HP + C_nH_{2n} \cdot T (n = 2-4)$                                                                                                                                                      | (Eq. S26) |
| $C_mH_{2m} \cdot C_nH_{2n} \cdot HP + T = C_nH_{2n} \cdot HP + C_mH_{2m} \cdot T \ (m = 2-4)$                                                                                                                                                    | (Eq. S27) |
| $C_mH_{2m} \cdot C_nH_{2n+1}P + T = C_nH_{2n+1}P + C_mH_{2m} \cdot T \ (m = 2-4)$                                                                                                                                                                | (Eq. S28) |
| $C_mH_{2m} \cdot HP + C_nH_{2n} \cdot T = C_nH_{2n} \cdot HP + C_mH_{2m} \cdot T (m, n = 2-4)$                                                                                                                                                   | (Eq. S29) |

**Table S4.** Elementary steps for the microkinetic simulations of the conversion of ketene to olefins in H-SAPO-34.

\_

|                | Distribution         | Specific rate / $s^{-1}$ ·molecule <sup>-1</sup> |                      |                     |                     |  |
|----------------|----------------------|--------------------------------------------------|----------------------|---------------------|---------------------|--|
| Olefinic HCP   |                      | Methylation                                      | Cracking to          | Cracking to         | Cracking to         |  |
|                |                      |                                                  | $C_2H_4$             | $C_3H_6$            | $C_4H_8$            |  |
| C <sub>2</sub> | 0.54                 | $4.2 \times 10^{-3}$                             | /                    | /                   | /                   |  |
| $C_3$          | 0.36                 | 0.15                                             | /                    | /                   | /                   |  |
| $C_4$          | $8.2 \times 10^{-2}$ | 0.72                                             | $3.3 \times 10^{-3}$ | /                   | /                   |  |
| $C_5$          | $1.1 \times 10^{-2}$ | 2.7                                              | 3.1                  | 3.1                 | /                   |  |
| $C_6$          | $1.4 \times 10^{-3}$ | 4.7                                              | 1.2                  | 15                  | 1.2                 |  |
| $C_7$          | $1.4 \times 10^{-7}$ | 0.29                                             | 21                   | $4.5 \times 10^{4}$ | $4.5 \times 10^{4}$ |  |

**Table S5.** Simulated distribution and evolution rate of each olefinic HCP in H-SAPO-34 for the conversion of ketene to olefins at 673 K and 0.1 MPa. The specific rate of each HCP is normalized to its amount.



**Scheme S1.** Proposed three-site model for the microkinetic simulations of the conversion of ketene to olefins in zeolite. Similar model was established previously for the microkinetic simulations of the conversion of methanol to olefins in zeolite [Ref. S1].



Figure S1. Reaction orders of ethene (A, B), propene (C, D), and butene (E, F) formation in ketene (A, C, E) and CO (B, D, F) as a function of temperature and pressure in H-SAPO-34 for the conversion of ketene to olefins. The default simulation conditions are CH<sub>2</sub>CO:CO = 1:1 and HP:HB:T = 1:1:1.



Figure S2. Relative distribution of  $C_2$  (A),  $C_3$  (B),  $C_4$  (C),  $C_5$  (D),  $C_6$  (E), and  $C_{7+}$  (F) intermediates as a function of temperature and pressure in H-SAPO-34 for the conversion of ketene to olefins.



Figure S3. Relative contribution of C<sub>4</sub> (A), C<sub>5</sub> (B), C<sub>6</sub> (C), and C<sub>7+</sub> (D) cracking to produce ethene as a function of temperature and pressure in H-SAPO-34 for the conversion of ketene to olefins.



Figure S4. Relative contribution of  $C_2$  methylation (A) and  $C_5$  (B),  $C_6$  (C),  $C_7$  (D), and  $C_{8+}$  (E) cracking to produce propene as a function of temperature and pressure in H-SAPO-34 for the conversion of ketene to olefins.



Figure S5. Relative contribution of  $C_3$  methylation (A) and  $C_6$  (B),  $C_7$  (C), and  $C_{8+}$  (D) cracking to produce butene as a function of temperature and pressure in H-SAPO-34 for the conversion of ketene to olefins.



Figure S6. Evolution of C<sub>4</sub> methylation to C<sub>5</sub> (A) and C<sub>4</sub> cracking to two C<sub>2</sub> intermediates (B) as a function of temperature and pressure in H-SAPO-34 for the conversion of ketene to olefins.



Figure S7. Evolution of C<sub>5</sub> methylation to C<sub>6</sub> (A) and C<sub>5</sub> cracking to  $C_2+C_3$  intermediates (B) as a function of temperature and pressure in H-SAPO-34 for the conversion of ketene to olefins.



**Figure S8.** Evolution of C<sub>6</sub> methylation to C<sub>7</sub> (**A**) and C<sub>6</sub> cracking to C<sub>3</sub>+C<sub>3</sub> (**B**) and C<sub>2</sub>+C<sub>4</sub> (**C**) intermediates as a function of temperature and pressure in H-SAPO-34 for the conversion of ketene to olefins.



**Figure S9.** Evolution of C<sub>7</sub> methylation to C<sub>8</sub> (**A**) and C<sub>7</sub> cracking to C<sub>3</sub>+C<sub>4</sub> (**B**) and C<sub>2</sub>+C<sub>5</sub> (**C**) intermediates as a function of temperature and pressure in H-SAPO-34 for the conversion of ketene to olefins.



**Figure S10.** Simulated specific rates of methylation (**A**) and cracking (**B**) for each olefinic HCP as a function of temperature in H-SAPO-34 for the conversion of ketene to olefins at 0.1 MPa. The specific rate of each HCP is normalized to its amount.



**Figure S11.** Relative contribution of the concerted (A) and stepwise (B) pathways to the methylation as a function of temperature and pressure in H-SAPO-34 for the conversion of ketene to olefins.



**Figure S12.** Relative contribution of the concerted (A) and stepwise (B) pathways to the cracking as a function of temperature and pressure in H-SAPO-34 for the conversion of ketene to olefins.



**Figure S13.** Relative contribution of possible pathways to the methylation (**A**) and cracking (**B**) as a function of temperature in H-SAPO-34 for the conversion of ketene to olefins at 0.1 MPa.



Figure S14. Rate differences in the conversion (A) and the formation of ethene (B), propene (C), and butene (D) of the ketene conversion to the methanol conversion as a function of temperature and pressure in H-SAPO-34. The rate difference is defined as  $log(TOF_{[ketene]}/TOF_{[methanol]})$ . The methanol conversion activities were taken from [Ref. S1].



**Figure S15.** Conversion rates (**A**) and ethene (**B**), propene (**C**), and butene (**D**) formation rates of the ketene and methanol conversions as a function of temperature in H-SAPO-34 at 0.1 MPa. The methanol conversion activities were taken from [Ref. S1].

## Effect of site ratio on simulated results

The ratio of HB to HP site affects the rates, the distribution of intermediates and the relative contribution of two methylation pathways, while exert slight effect on the selectivity, the cracking style and contribution of each pathway, and the origin of three olefins for the conversion of ketene to olefins (Figure X1–X3). At the conditions of 0.1 MPa & 673 K, the formation rates of each olefin product increase about two orders of magnitude when the ratio of HB:HP site increases from 1 to 1000, and the majorities of the retained olefins shift from  $C_2$ – $C_4$  to  $C_5$ – $C_6$  species (Figure X1). The increase of the contribution of the stepwise methylation (Figure X2) in HB site may accelerate the methylation activity of  $C_2$ – $C_4$  species. Thus, the conversion rate is improved by the introduction of additional acid sites.

The ratio of simulated T to HP site for the conversion of ketene to olefins is neglectable (Figure X4).



**Figure X1.** Activity (A), selectivity (B), and intermediate distribution (C) as a function of HB:HP site ratio in H-SAPO-34 for the conversion of ketene to olefins (Reaction conditions: 673 K, 0.1 MPa, CH<sub>2</sub>CO:CO = 1:1, and HB:HP:T = 0.001-1000:1:1).



**Figure X2.** Relative contribution of possible methylation (A) and cracking (C) pathways, and evolution of intermediates (**B**, **D**) as a function of HB:HP site ratio in H-SAPO-34 for the conversion of ketene to olefins (Reaction conditions: 673 K, 0.1 MPa, CH<sub>2</sub>CO:CO = 1:1, and HB:HP:T = 0.001-1000:1:1).



**Figure X3.** Origin of ethene (A), propene (B), and butene (C) as a function of HB:HP site ratio in H-SAPO-34 for the conversion of ketene to olefins (Reaction conditions: 673 K, 0.1 MPa,  $CH_2CO:CO = 1:1$ , and HB:HP:T = 0.001-1000:1:1).



**Figure X4.** Activity **(A)** and intermediate distribution **(B)** as a function of T:HP site ratio in H-SAPO-34 for the conversion of ketene to olefins (Reaction conditions: 673 K, 0.1 MPa,  $CH_2CO:CO = 1:1$ , and T:HP:HB = 0.001–1000:1:1).

## Reference

[S1] Ke, J.; Hu, W.-D.; Du, Y.-J.; Wang, Y.-D.; Wang, C.-M. Microkinetic simulations of methanol-to-olefin conversion in H-SAPO-34: Dynamic distribution and evolution of the hydrocarbon pool and implications for catalytic performance. *ACS Catalysis*, **2023**, *13*, 8642–8661.