Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting information

Mechanistic of Coke-Resistance Ni/ZrO₂ Catalyst for Dry Reforming of Methane

Under External Electric Fields: A Combined First-Principles and Microkinetic

Modeling Study

Hui Jiao ^a, Gui-Chang Wang ^{a*}

(a Tianjin Key Lab and Molecule-Based Material Chemistry, College of Chemistry, Nankai

University, Tianjin 300071, China)

*corresponding author

Tel. +86-22-23502458.

E-mail: wangguichang@nankai.edu.cn.

							Ni ₁₃ /	Ni25/	Ni ₁₃ /	Ni ₁₂ /	Ni55/
Species	Ni(111) ¹			Ni ₁₆ /ZrO ₂ (110)			ZrO ₂	ZrO ₂	CeO ₂	MgO	Al ₂ O ₃
							$(101)^2$	(101) ³	(111) ⁴	(100) ⁵	(110)6
Field (V/Å)	0.0	-0.6	+0.6	0.0	-0.6	+0.6					
CH ₄ *	-0.11	-0.10	-0.13	-0.22	-0.45	-0.30	-0.31	-0.35	-0.44	-0.05	0.00
CH ₃ *	-1.59	-1.46	-1.65	-2.29	-2.09	-2.49	-1.95	-1.49	-2.57	-2.12	
CH ₂ *	-3.59	-3.60	-3.61	-4.30	-3.98	-4.36	-4.37	-1.98	-4.52	-4.03	
CH*	-5.96	-6.06	-5.82	-6.25	-6.28	-6.42	-6.19	-2.97	-7.20	-6.24	
C*	-6.34	-6.23	-6.17	-7.07	-6.52	-6.68	-8.71		-7.88	-8.15	
H*	-2.71	-2.71	-2.69	-3.61	-2.76	-2.71	-3.89		-2.68	-0.20	
CO ₂ *	-0.16	-0.16	-0.17	-0.66	-0.88	-0.48	-1.51			-0.76	-1.49
CO*	-1.59	-1.73	-1.46	-2.20	-2.28	-2.24	-2.09	-1.35	-2.18	-1.81	-1.48
O*	-5.32	-5.26	-4.91	-5.65	-5.55	-5.52	-7.70		-5.86	-2.42	-6.05
CHO*	-2.03	-1.86	-1.86	-2.65	-2.47	-2.77	-2.43			-2.38	
CH_2O^*	-0.54	-0.27	-0.38	-1.38	-0.60	-1.00	-0.50				
COOH*	-2.05	-2.22	-1.79	-2.71	-2.81	-2.62					
OH*	-3.19	-2.72	-2.98	-4.18	-3.75	-3.88	-3.73		-3.97		-3.76
H_2O^*	-0.23	-0.12	-0.23	-0.53	-0.68	-0.41	0.10				-0.48
H ₂ *	0.05	0.14	-0.01	-0.40	-0.68	-0.61			-0.47		

Table S1. The electronic adsorption energy (ΔE_{ads}) in eV and adsorption sites of species on Ni(111) and Ni₁₆/ZrO₂ under electric fields.

Model	Ni ₁₆ /ZrO ₂						
Electric field	$0.0 \ V/{ m \AA}$		-0.6 V/Å		+0.6 V/Å		
Reaction	ΔE_a	$\varDelta E$	ΔE_a	ΔE	ΔE_a	$\varDelta E$	
$CH_{4(g)} \rightarrow CH_3*+H*$	0.78	-0.11	0.67	0.17	0.57	-0.02	
$CH_{4(g)} \rightarrow CH_3*+H-O_L*$	0.61	-1.01	0.35	-1.03	0.27	-1.35	
$\mathrm{CH}_3{}^* \to \mathrm{CH}_2{}^*{}{+}\mathrm{H}{}^*$	0.45	0.01	0.62	-0.07	0.75	0.20	
$\mathrm{CH}_2{}^* \to \mathrm{CH}{}^*{}{}^+\mathrm{H}{}^*$	0.40	-0.27	0.37	-0.35	0.34	-0.24	
$\mathrm{CH}^* \to \mathrm{C}^{*\!+\!\mathrm{H}^*}$	1.19	0.74	1.14	0.62	1.37	0.90	
$\mathrm{CO}_{2(g)}\!\rightarrow\!\mathrm{CO}^*\!\!+\!\!\mathrm{O}^*$	0.13	-1.73	-0.18	-1.62	0.14	-1.76	
$\mathrm{CO}_{2(g)}\!\!+\!\!\mathrm{H}^*\!\rightarrow\!\mathrm{COOH}^*$	0.23	-0.10	0.35	-0.12	0.65	-0.16	
$\mathrm{COOH}^* \! \rightarrow \! \mathrm{CO}^* \!\! + \! \mathrm{OH}^*$	0.10	-1.30	0.33	-1.40	0.40	-1.36	
$\mathrm{C*+O^*} \rightarrow \mathrm{CO^*}$	1.23	-1.79	1.29	-1.39	1.20	-1.93	
$\mathrm{CH}^{*}\!\!+\!\!\mathrm{O}^{*}\!\rightarrow\!\mathrm{CHO}^{*}$	1.14	0.07	1.03	0.20	0.87	0.02	
$\mathrm{CHO}^* \! \rightarrow \! \mathrm{CO}^* \!\! + \!\! \mathrm{H}^*$	0.25	-1.14	0.39	-1.07	0.48	-0.60	
$\mathrm{CH}_2*\!\!+\!\!\mathrm{O}^*\!\rightarrow\mathrm{CH}_2\mathrm{O}^*$	1.25	0.41	1.31	0.48	1.25	0.34	
$\mathrm{CH}_2\mathrm{O}^* \to \mathrm{CHO}^*{+}\mathrm{H}^*$	0.51	-0.29	0.42	-0.52	0.50	0.04	
$\mathrm{O}^{*}\!\!+\!\!\mathrm{H}^{*}\!\rightarrow\!\mathrm{OH}^{*}$	1.38	-0.05	1.48	-0.38	1.50	-0.35	
$OH^{*}\!\!+\!\!H^{*}\!\rightarrow\!H_{2}O_{(g)}$	1.42	0.95	1.32	0.64	1.58	1.12	
$H^{*}\!\!+\!\!H^{*}\!\rightarrow H_{2(g)}$	0.61	0.82	0.74	1.10	0.82	1.26	
$2\mathrm{CO}_{(g)}\!\rightarrow\!\mathrm{CO}_{2(g)}\!\!+\!\mathrm{C}^{*}$	1.45	1.24	0.74	0.55	0.86	0.64	
C*, diffusion	0.49	-0.22	0.49	-0.21	0.59	-0.12	
$2C^* \rightarrow C\text{-}C^*$	0.45	-0.79	0.48	-0.77	0.32	-0.90	
$2CH^* \rightarrow CH\text{-}CH^*$	0.27	-0.55	0.35	-0.37	0.21	-0.56	

Table S2. The activation energy (ΔE_a) and reaction energy (ΔE) in eV of all elementary reactions on Ni₁₆/ZrO₂ under electric fields.

Note: Zero-point energy (ZPE) correction is included.

	Ni ₁₆ /		Ni ₁₃ /		Ni ₂₅ /		Ni ₁₃ /		Ni ₁₂ /	
Model	ZrO ₂ (110)		$ZrO_2(101)^2$		$ZrO_2(101)^3$		CeO ₂ (111) ⁴		MgO(100) ⁵	
Reaction	ΔE_a	ΔE	ΔE_a	ΔE	ΔE_a	ΔE	ΔE_a	$\varDelta E$	ΔE_a	$\varDelta E$
$CH_{4(g)} \rightarrow CH_3*+H*$	0.78	-0.11	-0.10	-0.87	0.57	0.21	-0.10	-0.12	3.40	0.05
$\mathrm{CH}_{4(g)}\!\rightarrow\mathrm{CH}_{3}*\!+\!\mathrm{H}\text{-}\mathrm{O}_{L}*$	0.61	-1.01								
$\mathrm{CH}_3{}^* \to \mathrm{CH}_2{}^*{}{+}\mathrm{H}{}^*$	0.45	0.01	0.37	-0.34	0.80	0.52	0.68	0.34	2.58	0.77
$\mathrm{CH}_2{}^* \to \mathrm{CH}{}^*{}{}^+\mathrm{H}{}^*$	0.40	-0.27	0.36	-0.52	0.71	0.54	0.36	-0.78	1.92	-0.13
$\mathrm{CH}^* \to \mathrm{C}^{*\!+\!\mathrm{H}^*}$	1.19	0.74	0.38	-0.15	1.32	0.89	0.72	-0.16	1.39	0.55
$\mathrm{CO}_{2(g)}\!\rightarrow\mathrm{CO}^{*}\!\!+\!\!\mathrm{O}^{*}$	0.13	-1.73	-0.07	-1.30					-0.33	-0.79
$\mathrm{CO}_{2(g)}\!\!+\!\!\mathrm{H}^*\!\rightarrow\!\mathrm{COOH}^*$	0.23	-0.10								
$\mathrm{COOH}^* \! \rightarrow \! \mathrm{CO}^* \!\! + \! \mathrm{OH}^*$	0.10	-1.30								
$\mathrm{C*}{+}\mathrm{O*} \rightarrow \mathrm{CO*}$	1.23	-1.79	1.12	-0.47	1.31	-1.43	1.47	-0.31	2.24	-1.76
$\mathrm{CH}^{*}\!\!+\!\!\mathrm{O}^{*}\!\rightarrow\!\mathrm{CHO}^{*}$	1.14	0.07	2.61	0.79					3.28	0.44
$\mathrm{CHO}^* \! \rightarrow \! \mathrm{CO}^* \!\! + \!\! \mathrm{H}^*$	0.25	-1.14							1.64	-1.31
$\mathrm{CH}_2*\!\!+\!\!\mathrm{O}^*\!\rightarrow\mathrm{CH}_2\mathrm{O}^*$	1.25	0.41	2.18	1.14						
$\mathrm{CH}_2\mathrm{O}^* \to \mathrm{CHO}^{*}{+}\mathrm{H}^{*}$	0.51	-0.29								
$\mathrm{O}^{*}\!\!+\!\!\mathrm{H}^{*}\!\rightarrow\!\mathrm{OH}^{*}$	1.38	-0.05	1.10	0.09						
$OH^{*}\!\!+\!\!H^{*}\!\rightarrow\!H_{2}O_{(g)}$	1.42	0.95	1.77	1.51						
$H^{*}\!\!+\!\!H^{*}\!\rightarrow H_{2(g)}$	0.61	0.82	0.48	0.41			0.62	0.94		
$2\mathrm{CO}_{(g)}\!\rightarrow\!\mathrm{CO}_{2(g)}\!\!+\!\!\mathrm{C}^{\boldsymbol{\ast}}$	1.45	1.24								
C*, diffusion	0.49	-0.22								
$2C^* \rightarrow C\text{-}C^*$	0.45	-0.79			0.42	-1.39				
$2CH^* \rightarrow CH\text{-}CH^*$	0.27	-0.55								

Table S3. The activation energy (ΔE_a) and reaction energy (ΔE) in eV of elementary reactions on other Ni-supported catalysts reported in literature.

	Ni ₁₆ /ZrO ₂				
Reaction (distance of TS)	0.0 V/Å	-0.6 V/Å	+0.6 V/Å		
$CH_{4(g)} \rightarrow CH_3*+H^*(d_{C-H})$	1.658	1.641	1.679		
$\mathrm{CH}_{4(g)}\!\rightarrow\mathrm{CH}_{3}*\!\!+\!\!\mathrm{OH}*\left(d_{\mathrm{C}\text{-}\mathrm{H}}\right)$	1.358	1.357	1.360		
$\mathrm{CH}_3{}^* \to \mathrm{CH}_2{}^*{+}\mathrm{H}{}^* \left(d_{\text{C-H}} \right)$	1.793	1.812	1.794		
$\mathrm{CH}_2{}^* \to \mathrm{CH}{}^{*+}\mathrm{H}{}^* \ (d_{\mathrm{C}\text{-}\mathrm{H}})$	1.714	1.711	1.638		
$\mathrm{CH}^* \to \mathrm{C}^{*+}\mathrm{H}^* \ (\mathrm{d}_{\mathrm{C}\text{-}\mathrm{H}})$	1.629	1.610	1.609		
$\mathrm{CO}_2^* {\rightarrow} \mathrm{CO}^* {+} \mathrm{O}^* \left(\mathrm{d}_{\mathrm{C}\text{-}\mathrm{O}} \right)$	1.730	1.773	1.729		
$\mathrm{CO}_2^{*}\!\!+\!\!\mathrm{H}^* \!\rightarrow\! \mathrm{COOH}^*\left(d_{\mathrm{C}\text{-}\mathrm{H}}\right)$	1.408	1.406	1.407		
$\mathrm{COOH}^* \to \mathrm{CO}^{*}\!\!+\!\!\mathrm{OH}^* \left(\mathrm{d}_{\mathrm{C}\text{-}\mathrm{O}} \right)$	1.621	1.697	1.660		
$\mathrm{C*+O*} \to \mathrm{CO*} \ (d_{\text{C-O}})$	1.915	1.913	1.908		
$\mathrm{CH}^{*}\!\!+\!\!\mathrm{O}^{*}\rightarrow\mathrm{CHO}^{*}\left(d_{\mathrm{C}\text{-}\mathrm{O}}\right)$	1.884	1.879	1.887		
$\mathrm{CHO}^* \to \mathrm{CO}^{*+}\mathrm{H}^* \left(d_{\mathrm{C}\text{-}\mathrm{H}} \right)$	1.191	1.180	1.175		
$\mathrm{CH}_2*\!\!+\!\!\mathrm{O}^*\to\mathrm{CH}_2\mathrm{O}^*\left(d_{\text{C-O}}\right)$	1.929	1.927	1.931		
$\mathrm{CH}_2\mathrm{O}^* \to \mathrm{CHO}^*{+}\mathrm{H}^* \left(\mathrm{d}_{\mathrm{C}{-}\mathrm{H}} \right)$	1.715	1.672	1.577		
$\mathrm{O}^{*}\!\!+\!\!\mathrm{H}^{*}\rightarrow\mathrm{OH}^{*}\left(d_{\mathrm{O}\cdot\mathrm{H}}\right)$	1.392	1.388	1.363		
$OH^{*+}H^{*} \rightarrow H_{2}O^{*}\left(d_{O\text{-}H}\right)$	1.509	1.492	1.532		
$\mathrm{H}^{*}\!\!+\!\!\mathrm{H}^{*}\!\rightarrow\!\mathrm{H}_{2}^{*}(d_{\mathrm{H}\text{-}\mathrm{H}})$	1.313	1.316	1.303		
$2\mathrm{CO}^* \rightarrow \mathrm{CO}_2^{*+}\mathrm{C}^*\left(d_{\mathrm{C}\text{-}\mathrm{O}}\right)$	1.916	1.756	2.033		
$2C^* \rightarrow C_2^* (d_{C-C})$	2.029	2.024	2.021		
$2CH^* \rightarrow C_2H_2^* (d_{C-C})$	2.014	2.005	2.024		

Table S4. The distance of TS in all elementary reactions on Ni_{16}/ZrO_2 under electric fields. (Unit: Å)

Figure S1. The (a) Bader charge and (b) charge density difference plot of Ni_{16}/ZrO_2 with ZEF, NEF and PEF. (The values in the figure represent the charge of single atom.) The green, red, grayish-green, and purple represent Ni, O, and Zr, respectively. Isosurface level used for the charge density plot was 0.007 e/Bohr³. The yellow (cyan) color represents the charge accumulation (depletion).

Figure S2. The front view of the DRM intermediates on Ni_{16}/ZrO_2 interface. The green, red, and grayish-green represent Ni, O, and Zr, respectively.

Figure S3. The front view of IS, TS, and FS of elementary reaction involved in DRM reaction on Ni_{16}/ZrO_2 surface.

Figure S4. Potential energy profiles of (a) CH_2 -O, (b) CH-O, and (c) C-O oxidation on Ni_{16}/ZrO_2 and under electric fields.

Figure S5. Gibbs free energy profiles of CH_x -O (0-2) oxidation DRM reaction pathways on Ni₁₆/ZrO₂ under (a) ZEF, (b) NEF, and (c) PEF at 1073.15 K.

Figure S6. Relationship of the energy barrier and reaction energy for C–H breaking (R1, R3-5, R11, and R13) elementary reactions involved in the DRM reaction on (a) Ni(111) and (b) Ni_{16}/ZrO_2 under electric fields.

Figure S7. Gibbs free energy profiles of the most favorable (a) SRM reaction and (b) RWGS reaction on Ni_{16}/ZrO_2 under electric fields at 1073.15 K.

References

- 1 H. Jiao and G.-C. Wang, Catal. Sci. Technol., 2023, 13, 5407–5421.
- 2 H. Yang, H. Wang, L. Wei, Y. Yang, Y.-W. Li, X. Wen and H. Jiao, *Phys. Chem. Chem. Phys.*, 2021, 23, 26392–26400.
- 3 J. Niu, C. Zhang, K. Li, H. Liu, Y. Jin and J. Ran, Int. J. Hydrogen Energy, 2024, 59, 1399–1408.
- 4 A. Salcedo, P. G. Lustemberg, N. Rui, R. M. Palomino, Z. Liu, S. Nemsak, S. D. Senanayake, J. A. Rodriguez, M. V. Ganduglia-Pirovano and B. Irigoyen, *ACS Catal.*, 2021, **11**, 8327–8337.
- 5 Y. Guo, J. Feng and W. Li, Chin. J. Chem. Eng, 2017, 25, 1442–1448.
- 6 L. Foppa, T. Margossian, S. M. Kim, C. Müller, C. Copéret, K. Larmier and A. Comas-Vives, J. Am. Chem. Soc., 2017, 139, 17128–17139.