Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

"Dynamic stability of Pt-based alloys for fuel-cell catalysts calculated from atomistics"

Shubham Sharma, Cheng Zeng, and Andrew A. Peterson

1 RPBE optimized lattice constants

Table S1: RPBE optimized lattice constants of the Pt-based alloys considered in this study

2 Standard reduction potentials

Table S2: Standard reduction potentials (pH 0) for pure metals considered in this study obatained from Reference [\[1\]](#page-6-0)

3 Schematics showing diffusion pathway in cubic alloys

Figure S1: Schematic showing vacancy mediated bulk diffusion pathway for $L1_2$ -Pt₃M systems.

Figure S2: Schematic showing vacancy mediated "near-surface" diffusion pathway for $L1_2-Pt_3M$ systems.

4 DFT calculated dissolution potentials for elements in FCT and FCC Pt-based alloys

Table S3: Dissolution potential (ϕ) of Pt (in V_{SHE}) on 111 facet of L1₀-PtM and L1₂-Pt₃M surfaces as a function of Pt overlayers. Here, Pt_n denotes "n" overlayers of Pt on an alloy system, created by replacing solute metal (M) with Pt.

System	Dissolution Potential $(VSHE)$	System	Dissolution Potential $(VSHE)$
$L1_0$ -PtFe	1.90	$L1_2-Pt_3Fe$	2.07
$L1_0-PtFe/Pt_1$	1.96	$L1_2-Pt_3Fe/Pt_1$	1.76
$L1_0-PtFe/Pt_2$	1.76	$L1_2-Pt_3Fe/Pt_2$	1.69
$L1_0-PtCo$	1.86	$L1_2-Pt_3Co$	2.04
$L1_0-PtCo/Pt_1$	1.91	$L1_2-Pt_3Co/Pt_1$	1.74
$L1_0-PtCo/Pt_2$	1.73	$L1_2-Pt_3Co/Pt_2$	1.69
$L1_0$ -PtNi	1.82	$L1_2-Pt_3Ni$	1.91
$L1_0-PtNi/Pt_1$	1.74	$L1_2-Pt_3Ni/Pt_1$	1.73
$L1_0-PtNi/Pt_2$	1.62	$L1_2-Pt_3Ni/Pt_2$	1.68
		$L1_2-Pt_3Sc$	1.91
		$L1_2-Pt_3Sc/Pt_1$	1.78
		$L1_2-Pt_3Sc/Pt_2$	1.52

Table S4: Dissolution potential (ϕ) of M (in V_{SHE}) on 111 facet of L1₀-PtM and L1₂-Pt₃M surfaces

System	Dissolution Potential (V_{SHE})	System	Dissolution Potential $(VSHE)$
$L1_0$ -PtFe	0.13	$L1_2-Pt_3Fe$	0.27
$L1_0-PtCo$	0.15	$L1_2-Pt_3Co$	-0.01
$L1_0$ -PtNi	0.17	$L1_2-Pt_3Ni$	0.12
	$\overline{}$	$L1_2-Pt_3Sc$	-0.76

Table S5: Change in free energy, ΔG associated with substitution of solute metal (M) with a Pt atom in L1₀-PtM and L1₂-Pt₃M surfaces. Here, ϕ represents the potential in SHE scale.

5 Climbing-Image Nudged Elastic Band (CI-NEB) pathways for bulk diffusion

Figure S3: DFT calculated CI-NEB pathways for bulk diffusion in fcc Pt, $L1_0$ -Pt M and $L1_2$ -Pt₃ M structures. The overall barrier (in eV) from configuration "a" to "d" (*i.e.*, the forward barrier, E_f) is highlighted in red. E_r and ΔE represents the reverse barrier (in eV) and the potential energy difference (in eV) between configuration "d" and "a", respectively.

- 6 Climbing-Image Nudged Elastic Band (CI-NEB) pathways for "near surface" diffusion
- 6.1 Diffusion in FCC systems

Figure S4: DFT calculated CI-NEB pathways for "near surface" diffusion in $L1_2$ -Pt₃M structures. The overall barrier (in eV) from configuration "A" to "F" (*i.e.*, the forward barrier, E_f) is highlighted in red. E_r and ΔE represents the reverse barrier (in eV) and the potential energy difference (in eV) between configuration "F" and "A", respectively.

6.2 Diffusion in FCT systems

Figure S5: DFT calculated CI-NEB pathways for "near surface" diffusion in $L1_0$ -PtM structures. The overall barrier (in eV) from configuration "A" to "F" (*i.e.*, the forward barrier, E_f) is highlighted in red. E_r and ΔE represents the reverse barrier (in eV) and the potential energy difference (in eV) between configuration "F" and "A", respectively.

7 Rate (or time constant) comparisons

The diffusion barrier can be correlated to the rate of diffusion by

$$
k=Ae^{-\frac{\Delta E}{k_BT}}
$$

Here, ΔE is the overall diffusion barrier of a system for a given pathway (in eV), k_B is the Boltzmann constant (in eV/K), k is the rate of overall diffusion, A is the pre-expoenential factor, and T is the temperature (in K). We compared two systems in terms of their rates of diffusion by

$$
\frac{k_1}{k_2} = e^{\frac{\Delta E_2 - \Delta E_1}{k_B T}}
$$

$$
\ln \frac{k_1}{k_2} = \frac{\Delta E_2 - \Delta E_1}{k_B T}
$$

Here, k_1 and k_2 are the rate of overall diffusion for the reference and target systems, respectively. A more positive value of $\ln \frac{k_1}{k_2}$ suggests rate of diffusion in target system to be slower than the reference system by a factor of $e^{\frac{\Delta E_2 - \Delta E_1}{k_B T}}$ and vice-versa.

Figure S6: Comparison heatmap for rate of overall diffusion at T=80 ◦C for (A) bulk diffusion pathway and (B) near surface diffusion pathway.

References

[1] CRC Handbook, CRC Handbook of Chemistry and Physics, 88th Edition. CRC Press, 88 ed., 2007.