Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting information for

Multistep screening of transition metal based homonuclear double atom catalysts to unravel the electronic origin of their activity and selectivity challenges for nitrogen reduction.

Anjumun Rasool^a and Manzoor Ahmad Dar^{a*} ^a Department of Chemistry, Islamic University of Science and Technology,

Awantipora, Jammu and Kashmir-192122, India

Table of contents

- Table 1. Lattice parameters of the optimized unit cells of 3d, 4d and 5d transition metal-based DACs on TCNQ monolayer
- Fig. S1. Top and side views of the optimised structures of (a) 3d, (b) 4d, and (c) 5d transition metal-based DACs supported on TCNQ catalysts with binding energy values
- Fig. S2. Computed dissolution potential (U_{diss}) of (a)3d, (b) 4d and (c) 5d transition metal-based DACs supported on the TCNQ monolayer
- **4.** Fig. S3. Optimized structures (top view) and charge density differences plots of chemisorbed N₂ on (a) 3d, (b) 4d, and (c) 5d DACs. The charge depletion and accumulation are depicted by pink and green colours, respectively. The isosurface value used for plotting the charge density difference plots is 0.0006 eA⁻³. The net Bader charge accumulated on the adsorbed N₂ is depicted using blue arrow in the charge density difference plots.
- 5. Fig. S4. Optimized side views of N₂ adsorbed structures on the active site of (a) 3d,
 (b) 4d and (c) 5d transition metal-based DACs
- 6. Fig. S5. Free energy profile for NRR on V_2 DAC along alternating and distal mechanisms
- Fig. S6. Free energy profile for NRR on Fe₂ DAC along distal mechanism and on Co₂ catalyst along distal and enzymatic mechanisms
- 8. Fig. S7. Free energy profile for NRR on Ni₂ DAC along alternating and distal mechanisms

- **9.** Fig. S8. Free energy profile for NRR on Nb₂ and La₂ DACs along the enzymatic mechanism
- **10. Fig. S9.** Free energy profile for NRR on Hf₂ and Ta₂ DACs along alternating, distal and enzymatic mechanisms
- **11. Fig. S10.** Free energy profile for NRR on W₂ DAC along distal and enzymatic mechanisms and on Re₂ DAC along alternate and distal mechanisms
- 12. Fig. S11. Optimized truncated side views of NRR intermediates on (a) V₂ and (b) Fe₂ DACs along alternating and distal mechanisms. Pink and green coloured arrows indicate alternating and distal mechanisms respectively
- 13. Fig. S12. Optimized truncated side views of NRR intermediates on Co₂ DAC along alternating, distal, and enzymatic mechanisms. Pink, green, and purple-coloured arrows indicate alternating, distal, and enzymatic mechanisms respectively
- 14. Fig. S13. Optimized truncated side views of NRR intermediates on Ni₂ DAC along alternating and distal mechanisms. Pink and green coloured arrows indicate alternating and distal mechanisms respectively
- 15. Fig. S14. Optimized truncated side views of NRR intermediates on (a) Nb₂ and (b) La₂ DACs along enzymatic mechanisms
- 16. Fig. S15. Optimized truncated side views of NRR intermediates on (a) Hf₂ (b) Ta₂ and (c) W₂ DACs along alternating, distal, and enzymatic mechanisms. Pink, green, and purple-coloured arrows indicate alternating, distal, and enzymatic mechanisms respectively.
- 17. Fig. S16. Optimized truncated side views of NRR intermediates on Re₂ DAC along alternating and distal mechanisms. Pink and green coloured arrows indicate alternating and distal mechanisms respectively.
- 18. Fig. S17. Free energy changes for adsorption of the NRR intermediates (*N₂, *N₂H, *N₂H₂, *N₂H₃, *N₂H₄, *NH₂ and *NH₃) on the screened DACs: plotted as a function of total transition metal dimer d- states near Fermi level (-3.0 to 3.0 eV). The data points from left to right are for La₂, Nb₂, Hf₂, Ta₂, V₂, W₂, Re₂, Fe₂, Ni₂ and Co₂ catalysts respectively. Solid lines are the fitted linear relation between free energies and total d-states of the intermediates, with the slope and intercept shown in the plot.
- **19. Fig. S18**. The correlations between (a) adsorption energies of N₂ (ΔE_{*N_2}) and NNH (ΔE_{*NNH}), (b) adsorption energies of NH₂ (ΔE_{*NH_2}) and NH₃ (ΔE_{*NH_3}) intermediates adsorbed on screened out DACs.

- 20. Fig. S19. The scaling relationships for free energy of (a) *N₂H vs *N₂, (b)* N₂H₂ vs *N₂, (c) *N₂H₃ vs *N₂, (d) *N₂H₄ vs *N₂, (e) *NH₂ vs *N₂, and (f) *NH₃ vs *N (NRR intermediates on the screened DACs).
- **21. Fig. S20.** The projected density of states (PDOS) of (i) 3d, (ii) 4d, and (iii) 5d transition metal-based DACs. The PDOS of the total, TM-d, N-2p, C-2p and H-1s is plotted in grey, pink, dark green, blue and cyan colours, respectively.
- 22. Fig. S21. Computed crystal orbital Hamilton populations (COHPs) and respective orbital projected density of states (oPDOS) for the direct interaction between M_2 -N bonds of the N₂ adsorbed on the screened DACs. The bonding and antibonding states in COHP are depicted by blue and red, respectively. Plots representing the correlation between (a) the calculated integrated crystal Hamilton population (ICOHP) of the bond between screened DACs and N atom/atoms of adsorbed *N₂ molecule and N-N bond length. (b) the calculated ICOHP of the bond between screened DACs and N atom/atoms of adsorbed *N₂ adsorption (ΔG_{*N_2}) (c) the calculated ICOHP of N-N bond on screened DACs and N-N bond length
- **23. Fig. S22**. The crystal orbital Hamilton population (COHP) of N–N bond of N₂ on the screened DACs. The bonding and antibonding states in COHP are depicted by blue and red, respectively.
- **24. Table S2.** Energy, ZPE, TS, G and Δ G of reaction steps of NRR on V₂, Fe₂ and Ni₂ DACs along alternating and distal mechanisms
- **25. Table S3.** Energy, ZPE, TS, G and Δ G of reaction steps of NRR on Co₂ DAC along alternating, distal and enzymatic mechanisms
- **26. Table S4.** Energy, ZPE, TS, G and Δ G of reaction steps of NRR on Nb₂ and La₂ DACs along the enzymatic mechanism
- **27. Table S5.** Energy, ZPE, TS, G and Δ G of reaction steps of NRR on Hf₂, Ta₂ and W₂ DACs along alternating, distal and enzymatic mechanisms
- **28. Table S6.** Energy, ZPE, TS, G and Δ G of reaction steps of NRR on Re₂ DAC along alternating and distal mechanisms

Table S1: Lattice parameters of the optimized unit cells of 3d, 4d and 5d transition metal-based DACs on TCNQ monolayer.

System	Lattice	parameters	
Sc ₂ @TCNQ	a=6.30 Å	b=12.31 Å	c=4.47 Å
	α= 114.47°	° β=45.65°	γ=93.04°
Ti ₂ @TCNQ	a=8.44 Å	b=11.37Å	c=13.49 Å
	α=89.83°	β=90.22°	γ=89.86°
V ₂ @TCNQ	a=8.21 Å	b=11.32 Å	c=15.11 Å
	α=89.88°	β=90.00°	γ=89.64°
Cr ₂ @TCNQ	a=8.09 Å	b=11.38 Å	c=6.41 Å
	α=88.89°	β=89.91°	γ=89.88°
Mn ₂ @TCNQ	a=7.89 Å	b=12.67 Å	c=13.90 Å
	α=91.35°	β=90.18°	γ=89.95°
Fe ₂ @TCNQ	a=8.13 Å	b=11.28 Å	c=13.65 Å
	α=90.24°	β=90.23°	γ=89.58°
Co ₂ @TCNQ	a=8.04 Å	b=10.97 Å	c=13.35 Å
	α=89.13°	β=90.22°	γ=90.00°
Ni ₂ @TCNQ	a=8.07 Å	b=11.12 Å	c=15.01 Å
	α=90.99°	β=89.80°	γ=89.90°
Cu ₂ @TCNQ	a=8.13 Å	b=11.34 Å	c=13.14 Å
	α=90.24°	β=89.25°	c=94.47°
Y ₂ @TCNQ	a=8.60 Å	b=11.72 Å	c=6.94 Å
	α=89.80°	β= 90.58°	γ=89.87°
Zr ₂ @TCNQ	a=8.60 Å	b=11.72 Å	c=6.94 Å
	α=89.80°	β= 90.58°	γ=89.87°
Nb ₂ @TCNQ	a= 8.62 Å	b=11.31 Å	c= 14.70 Å
	α= 90.57°	β= 90.14°	γ=89.77°

Tc ₂ @TCNQ	a= 7.93 Å	b=11.49 Å	c= 4.18 Å
	α= 62.11°	β= 119.87 °	γ= 88.58°
Mo ₂ @TCNQ	a= 8.47 Å	b=11.57 Å	c= 14.77 Å
	α= 89.72°	β= 90.07°	γ= 89.57°
Ru ₂ @TCNQ	a=8.60 Å	b=11.72 Å	c=6.94 Å
	α=89.80°	$\beta = 90.58^{\circ}$	γ=89.87°
Rh ₂ @TCNQ	a= 8.41 Å	b= 10.96 Å	c= 5.93 Å
	α= 87.64°	β= 89.15°	γ= 89.97°
Pd ₂ @TCNQ	a= 7.99 Å	b= 10.74 Å	c= 4.55 Å
	α= 53.98°	β=118.09°	γ= 87.09°
Ag ₂ @TCNQ	a=8.60 Å	b=11.72 Å	c=6.94 Å
	α=89.80°	β= 90.58°	γ=89.87°
La ₂ @TCNQ	a=7.52 Å	b=10.97 Å	c=4.14 Å
	α=71.07°	β=132.08°	γ=115.92°
Hf ₂ @TCNQ	a=7.44 Å	b=13.04 Å	c=4.14 Å
	α=117.40°	β=114.11°	γ=92.75°
Ta ₂ @TCNQ	a=7.76 Å	b=12.10 Å	c=4.10 Å
	α=63.63°	β=116.91°	γ=90.02°
W ₂ @TCNQ	a=7.65 Å	b=10.28 Å	c=4.15 Å
	α=82.22°	β=135.48°	γ=96.21°
Re ₂ @TCNQ	a=7.73 Å	b=10.47 Å	c=3.85 Å
	α=69.92°	β=47.79°	γ=84.21°
Os ₂ @TCNQ	a=8.03 Å	b=10.16 Å	c=3.92 Å
	α=80.58°	β=45.15°	γ=90.32°
Ir ₂ @TCNQ	a=8.41 Å	b=10.87 Å	c=5.04 Å
	α=88.30°	β= 90.22°	γ=90.22°
Pt ₂ @TCNQ	a=8.44 Å	b=10.47 Å	c=4.25 Å
	α=69.69°	β=48.19°	γ=88.42°

Au ₂ @TCNQ	a=8.54 Å	b=11.70 Å	c=5.98 Å
	α=90.91°	β= 91.08°	γ=89.78°

(a)

(b)

Fig. S1. Top and side views of the optimised structures of (a) 3d, (b) 4d, and (c) 5d transition metal-based DACs supported on TCNQ monolayer with binding energy values.

Fig. S2. Computed dissolution potential (U_{diss}) of (a)3d, (b) 4d and (c) 5d transition metalbased DACs supported on the TCNQ monolayer

(b)

Fig. S3. Optimized structures (top view) and charge density differences plots of chemisorbed N_2 on (a) 3d, (b) 4d, and (c) 5d DACs. The charge depletion and accumulation are depicted by pink and green colours, respectively. The isosurface value used for plotting the charge density

difference plots is 0.0006 eA⁻³. The net Bader charge accumulated on the adsorbed N_2 is depicted using blue arrow in the charge density difference plots.

Fig. S4. Optimized side views of N_2 adsorbed on the active site of (a) 3d, (b) 4d and (c) 5d transition metal-based DACs

Fig. S5. Free energy profile for NRR on V2 DAC along alternating and distal mechanisms

Fig. S6. Free energy profile for NRR on Fe_2 DAC along distal mechanism and on Co_2 DAC along distal and enzymatic mechanisms

Fig. S7. Free energy profile for NRR on Ni₂ DAC along alternating and distal mechanisms

Fig. S8. Free energy profile for NRR on Nb₂ and La₂ DACs along enzymatic mechanism.

Fig. S9. Free energy profile for NRR on Hf_2 and Ta_2 DACs along alternating, distal and enzymatic mechanisms

Fig. S10. Free energy profile for NRR on W_2 DAC along distal and enzymatic mechanisms and on Re₂ DAC along alternate and distal mechanisms

Fig. S11. Optimized truncated side views of NRR intermediates on (a) V_2 and (b) Fe₂ DACs along alternating and distal mechanisms. Pink and green coloured arrows indicate alternating and distal mechanisms respectively

Fig. S12. Optimized truncated side views of NRR intermediates on Co_2 DAC along alternating, distal, and enzymatic mechanisms. Pink, green, and purple-coloured arrows indicate alternating, distal, and enzymatic mechanisms respectively

Fig. S13. Optimized truncated side views of NRR intermediates on Ni_2 DAC along alternating and distal mechanisms. Pink and green coloured arrows indicate alternating and distal mechanisms respectively

(b)

(C)

Fig. S15. Optimized truncated side views of NRR intermediates on (a) Hf_2 (b) Ta_2 and (c) W_2 DACs along alternating, distal, and enzymatic mechanisms. Pink, green, and purple-coloured arrows indicate alternating, distal, and enzymatic mechanisms respectively.

Fig. S16. Optimized truncated side views of NRR intermediates on Re_2 DAC along alternating and distal mechanisms. Pink and green coloured arrows indicate alternating and distal mechanisms respectively.

Fig. 17. Free energy changes for adsorption of the NRR intermediates ($*N_2$, $*N_2H$, $*N_2H_2$, $*N_2H_3$, $*N_2H_4$, $*NH_2$ and $*NH_3$) on the screened DACs: plotted as a function of total transition metal dimer d- states near Fermi level (-3.0 to 3.0 eV). The data points from left to right are for La₂, Nb₂, Hf₂, Ta₂, V₂, W₂, Re₂, Fe₂, Ni₂ and Co₂ catalysts respectively. Solid lines are the fitted linear relation between free energies and total d-states of the intermediates, with the slope and intercept shown in the plot.

Fig. 18. The correlations between (a) adsorption energies of N₂ (ΔE_{*N_2}) and NNH (ΔE_{*NNH}), (b) adsorption energies of NH₂ (ΔE_{*NH_2}) and NH₃ (ΔE_{*NH_3}) intermediates adsorbed on screened out DACs.

Fig. S19. The scaling relationships for free energy of (a) $N_2H vs N_2$, (b) $N_2H_2 vs N_2$, (c) $N_2H_3 vs N_2$, (d) $N_2H_4 vs N_2$, (e) $N_1H_2 vs N_2$, and (f) $N_1H_3 vs N_2$ (NRR intermediates on the screened DACs).

(i)

Fig. S20. The projected density of states (PDOS) of (i) 3d, (ii) 4d, and (iii)5d transition metal based DACs. The PDOS of the total, TM-d, N-2p, C-2p and H-1s is plotted in grey, pink, dark green, blue and cyan colours, respectively.

Fig. 21. Computed crystal orbital Hamilton populations (COHPs) and respective orbital projected density of states (oPDOS) for the direct interaction between M_2 –N bonds of the N_2 adsorbed on the screened DACs. The bonding and antibonding states in COHP are depicted by blue and red, respectively. Plots representing the correlation between (a) the calculated integrated crystal Hamilton population (ICOHP) of the bond between screened DACs and N atom/atoms of adsorbed *N₂ molecule and N-N bond length. (b) the calculated ICOHP of the bond between screened DACs and N atom/atoms of adsorbed *N₂ adsorption (ΔG_{*N_2}) (c) the calculated ICOHP of N-N bond on screened DACs and N-N bond length

Fig. S22. The crystal orbital Hamilton population (COHP) of N–N bond of N_2 on the screened DACs. The bonding and antibonding states in COHP are depicted by blue and red, respectively.

Table S2. Energy, ZPE, TS, G and ΔG of reaction steps of NRR on V₂, Fe₂ and Ni₂ DACs along alternating and distal mechanisms

System	Energy	ZPE	TS	G	ΔG
N2P1	-187.98	0.20	0.16	-187.94	-0.77
N2P1-1H	-191.38	0.50	0.14	-191.02	-0.55
N2P1-2H	-194.35	0.79	0.18	-193.74	0.03
N2P1-3H	-199.19	1.05	0.12	-198.26	-1.19
N2P1-4H	-201.87	1.48	0.24	-200.62	-0.25
N1P1-2H	-188.18	0.71	0.08	-187.55	-2.64

Alternating	NRR	mechanism	on	V_2
-------------	-----	-----------	----	-------

N1P1-3H	-191.04	1.01	0.13	-190.17	-1.95

System	Energy	ZPE	TS	G	ΔG
N2P1	-187.98	0.20	0.16	-187.94	-0.77
N2P1-1H	-191.38	0.50	0.14	-191.02	-0.55
N2P1-2H	-195.87	0.83	0.15	-195.20	-1.43
N1P1	-179.84	0.09	0.04	-179.79	-1.48
N1P1-1H	-184.40	0.37	0.06	-184.09	-2.47
N1P1-2H	-188.18	0.71	0.08	-187.55	-2.64
N1P1-3H	-191.04	1.01	0.13	-190.17	-1.95

Alternating NRR mechanism on Fe₂

System	Energy	ZPE	TS	G	ΔG
N2P1	-185.60	0.19	0.18	-185.59	-0.54
N2P1-1H	-188.65	0.48	0.16	-188.33	0.02
N2P1-2H	-192.09	0.81	0.17	-191.44	0.20
N2P1-3H	-196.24	1.13	0.19	-195.30	-0.35
N2P1-4H	-199.64	1.48	0.24	-198.40	-0.15
N1P1-2H	-185.44	0.70	0.09	-184.83	-2.04
N1P1-3H	-188.72	1.01	0.20	-187.92	-1.83

Distal NRR mechanism on Fe₂

System	Energy	ZPE	TS	G	ΔG
N2P1	-185.60	0.19	0.18	-185.59	-0.54
N2P1-1H	-188.65	0.48	0.16	-188.33	0.02
N2P1-2H	-192.30	1.57	0.27	-191.01	0.64
N1P1	-176.00	0.08	0.05	-175.97	0.22
N1P1-1H	-180.31	0.33	0.07	-180.05	-0.56
N1P1-2H	-185.44	0.70	0.09	-184.83	-2.04
N1P1-3H	-188.72	1.01	0.20	-187.92	-1.83

Alternating NRR mechanism on Ni₂

System	Energy	ZPE	TS	G	ΔG
N2P1	-180.29	0.22	0.12	-180.19	-0.08
N2P1-1H	-183.27	0.50	0.07	-182.84	0.57
N2P1-2H	-186.43	0.81	0.15	-185.77	0.94
N2P1-3H	-190.82	1.16	0.16	-189.82	0.19
N2P1-4H	-194.46	1.47	0.27	-193.26	0.06
N1P1-2H	-179.72	0.71	0.07	-179.07	-1.21
N1P1-3H	-183.60	1.01	0.19	-182.77	-1.65

System	Energy	ZPE	TS	G	ΔG
N2P1	-180.29	0.22	0.12	-180.19	-0.08
N2P1-1H	-183.27	0.50	0.07	-182.84	0.57
N2P1-2H	-186.84	0.80	.15026760	-186.19	0.53
N1P1	-170.62	0.09	0.05	-170.58	0.67
N1P1-1H	-174.81	0.37	0.06	-174.50	0.06
N1P1-2H	-179.72	0.71	0.07	-179.07	-1.21
N1P1-3H	-183.60	1.01	0.19	-182.77	-1.65

Distal NRR mechanism on Ni₂

Table S3. Energy, ZPE, TS, G and Δ G of reaction steps of NRR on Co₂ DAC along alternating, distal and enzymatic mechanisms

System	Energy	ZPE	TS	G	ΔG
N2P1	-182.87	0.20	0.14	-182.81	-0.37
N2P1-1H	-185.89	0.50	0.14	-185.53	0.21
N2P1-2H	-189.09	0.82	0.16	-188.44	0.61
N2P1-3H	-193.38	0.50	0.14	-193.02	-0.68
N2P1-4H	-197.04	1.49	0.24	-195.80	-0.16
N1P1-2H	-182.36	0.71	0.08	-181.73	-1.55
N1P1-3H	-186.19	1.01	0.19	-185.37	-1.88

Alternating NRR mechanism on Co₂

Distal NRR mechanism on Co₂

System	Energy	ZPE	TS	G	ΔG
N2P1	-182.87	0.20	0.14	-182.81	-0.37
N2P1-1H	-185.89	0.50	0.14	-185.53	0.21
N2P1-2H	-189.45	0.81	0.17	-188.81	0.23
N1P1	-173.88	0.10	0.00	-173.78	-0.19
N1P1-1H	-177.41	0.36	0.06	-177.11	-0.22
N1P1-2H	-182.36	0.71	0.08	-181.73	-1.54
N1P1-3H	-186.19	1.01	0.19	-185.37	-1.87

Enzymatic NRR mechanism on Co₂

System	Energy	ZPE	TS	G	ΔG
N2P3	-182.65	0.20	0.12	-182.56	-0.12
N2P3-1H	-185.67	0.50	0.11	-185.28	0.46
N2P3-2H	-189.30	0.82	0.13	-188.61	0.43
N2P3-3H	-193.07	1.20	0.08	-191.95	0.39
N2P3-4H	-196.87	1.45	.010	-195.52	0.12
N1P1-2H	-182.36	0.71	0.08	-181.73	-1.54
N1P1-3H	-186.19	1.01	0.19	-185.37	-1.87

Table S4. Energy, ZPE, TS, G and Δ G of reaction steps of NRR on Nb₂ and La₂ DACs along enzymatic mechanisms

System	Energy	ZPE	TS	G	ΔG
N2P3	-189.67	0.20	0.08	-189.55	-1.44
N2P3-1H	-192.98	0.48	0.13	-192.63	-1.22
N2P3-2H	-197.12	0.81	0.13	-196.44	-1.73
N2P3-3H	-200.46	1.15	0.15	-199.47	-1.46
N2P3-4H	-206.65	1.34	0.22	-205.54	-4.23
N1P1-2H	-188.81	0.67	0.12	-188.26	-2.41
N1P1-3H	-192.12	1.01	0.13	-191.25	-2.09

Enzymatic NRR mechanism on Nb₂

Enzymatic NRR mechanism on La₂

System	Energy	ZPE	TS	G	ΔG
N2P3	-184.63	0.18	0.13	-184.58	-1.63
N2P3-1H	-188.58	0.46	0.14	-188.27	-2.02
N2P3-2H	-193.25	0.78	0.13	-192.59	-3.05
N2P3-3H	-195.69	1.12	0.20	-194.77	-1.92
N2P3-4H	-202.43	1.32	0.22	-201.33	-5.18
N1P1-2H	-184.46	0.65	0.11	-183.93	-3.23
N1P1-3H	-187.24	0.98	0.21	-186.47	-2.48

Table S5. Energy, ZPE, TS, G and Δ G of reaction steps of NRR on Hf₂, Ta₂ and W₂ DACs along alternating, distal and enzymatic mechanisms

Alternating NRR mechanism on Hf₂

System	Energy	ZPE	TS	G	ΔG
N2P1	-189.16	0.38	0.21	-188.99	-1.17
N2P1-1H	-194.78	0.48	0.08	-194.38	-3.26
N2P1-2H	-198.06	0.80	0.14	-197.40	-2.99
N2P1-3H	-200.61	1.13	0.19	-199.67	-1.95
N2P1-4H	-203.23	1.49	0.22	-201.96	-0.94
N1P1-2H	-189.23	0.64	0.14	-188.73	-3.17
N1P1-3H	-192.22	1.01	0.16	-191.38	-2.51

Distal NRR mechanism on Hf₂

System	Energy	ZPE	TS	G	ΔG
N2P1	-189.16	0.38	0.21	-188.99	-1.17
N2P1-1H	-194.78	0.48	0.08	-194.38	-3.26
N2P1-2H	-198.15	0.87	0.12	-197.40	-2.98
N1P1	-182.66	0.09	0.05	-182.63	-3.66

N1P1-1H	-186.52	0.35	0.04	-186.21	-3.95
N1P1-2H	-189.23	0.64	0.14	-188.73	-3.17
N1P1-3H	-192.22	1.01	0.16	-191.38	-2.51

Enzymatic NRR mechanism on Hf₂

System	Energy	ZPE	TS	G	ΔG
N2P3	-190.86	0.20	0.09	-190.74	-2.92
N2P3-1H	-194.78	0.48	0.08	-194.39	-3.27
N2P3-2H	-198.22	0.81	0.13	-197.54	-3.12
N2P3-3H	-201.02	1.13	0.11	-199.99	-2.27
N2P3-4H	-207.38	1.28	0.30	-206.39	-5.38
N1P1-2H	-189.23	0.64	0.14	-188.73	-3.17
N1P1-3H	-192.22	1.01	0.16	-191.38	-2.51

Alternating NRR mechanism on Ta₂

System	Energy	ZPE	TS	G	ΔG
N2P1	-191.25	0.20	0.10	-191.15	-1.15
N2P1-1H	-194.58	0.49	0.17	-194.26	-0.95
N2P1-2H	-197.77	0.80	0.21	-197.18	-0.57
N2P1-3H	-202.48	1.13	0.22	-201.58	-1.67
N2P1-4H	-205.35	1.49	0.21	-204.07	-0.86
N1P1-2H	-191.50	0.67	0.11	-190.4	-3.19
N1P1-3H	-194.34	1.02	0.14	-193.46	-2.41

Distal NRR mechanism on Ta₂

System	Energy	ZPE	TS	G	ΔG
N2P1	-191.25	0.20	0.10	-191.15	-1.15
N2P1-1H	-194.58	0.49	0.17	-194.26	-0.95
N2P1-2H	-198.34	0.80	0.13	-197.67	-1.07
N1P1	-184.28	0.09	0.04	-184.22	-3.07
N1P1-1H	-186.85	0.35	0.10	-186.59	-2.14
N1P1-2H	-191.50	0.67	0.11	-190.4	-3.19
N1P1-3H	-194.34	1.02	0.14	-193.46	-2.41

Enzymatic NRR mechanism on Ta₂

System	Energy	ZPE	TS	G	ΔG
N2P1	-192.42	0.21	0.07	-192.28	-2.28
N2P1-1H	-196.10	0.50	0.10	-195.70	-2.39
N2P1-2H	-199.73	0.79	0.14	-199.08	-2.48
N2P1-3H	-205.36	1.01	0.21	-204.56	-4.65
N2P1-4H	-209.73	1.33	0.23	-208.63	-5.42
N1P1-2H	-191.50	0.67	0.11	-190.4	-3.19
N1P1-3H	-194.34	1.02	0.14	-193.46	-2.41

Alternating NRR mechanism on \mathbf{W}_2

System	Energy	ZPE	TS	G	ΔG
N2P1	-192.25	0.23	0.09	-192.11	-0.60
N2P1-1H	-195.21	0.49	0.16	-194.89	-0.07
N2P1-2H	-198.69	0.82	0.18	-198.05	0.07
N2P1-3H	-203.07	1.05	0.16	-202.18	-0.77
N2P1-4H	-206.49	1.49	0.23	-205.22	-0.51
N1P1-2H	-191.94	0.73	0.07	-191.27	-2.01
N1P1-3H	-195.44	1.02	0.18	-194.60	-2.03

Distal NRR mechanism on W₂

System	Energy	ZPE	TS	G	ΔG
N2P1	-192.25	0.23	0.09	-192.11	-0.60
N2P1-1H	-195.21	0.49	0.16	-194.89	-0.07
N2P1-2H	-199.30	0.81	0.18	-198.67	-0.55
N1P1	-183.28	0.08	0.06	-183.26	-0.60
N1P1-1H	-187.84	0.36	0.08	-187.56	-1.60
N1P1-2H	-191.94	0.73	0.07	-191.27	-2.01
N1P1-3H	-195.44	1.02	0.18	-194.60	-2.03

Enzymatic NRR mechanism on W₂

System	Energy	ZPE	TS	G	ΔG
N2P1	-192.03	0.19	0.08	-191.93	-0.41
N2P1-1H	-195.95	0.50	0.11	-195.56	-0.74
N2P1-2H	-199.68	0.80	0.14	-199.02	-0.90
N2P1-3H	-205.87	1.05	0.16	-204.98	-3.57
N2P1-4H	-209.57	1.36	0.19	-208.40	-3.68
N1P1-2H	-191.94	0.73	0.07	-191.27	-2.01
N1P1-3H	-195.44	1.02	0.18	-194.60	-2.03

Table S6. Energy, ZPE, TS, G and Δ G of reaction steps of NRR on Re₂ DAC along alternating and distal mechanisms

System	Energy	ZPE	TS	G	ΔG
N2P1	-190.81	0.22	0.14	-190.73	-0.81
N2P1-1H	-193.62	0.49	0.16	-193.29	-0.07
N2P1-2H	-197.47	0.85	0.15	-196.78	-0.26
N2P1-3H	-201.24	1.13	0.11	-200.22	-0.40
N2P-4H	-205.17	1.51	0.19	-203.84	-0.71
N1P1-2H	-190.12	0.69	0.06	-189.48	-1.81
N1P1-3H	-194.04	1.04	0.09	-193.08	-2.11

Alternating NRR mechanism on Re₂

System	Energy	ZPE	TS	G	ΔG
N2P1	-190.81	0.22	0.14	-190.73	-0.81
N2P1-1H	-193.62	0.49	0.16	-193.29	-0.07
N2P1-2H	-198.14	0.82	0.10	-197.42	-0.90
N1P1	-181.90	0.09	0.06	-181.87	-0.80
N1P1-1H	-186.20	0.38	0.07	-185.89	-1.52
N1P1-2H	-190.12	0.69	0.06	-189.48	-1.81
N1P1-3H	-194.04	1.04	0.09	-193.08	-2.11

Distal NRR mechanism on Re₂