Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Dispersion of Au Entities over Mo₂N and MoC for the Low-Temperature Water-Gas Shift Reaction

Peiyao Guo,^{ab} Chuanchuan Jin,^a Shaobo Han,^a Yan Zhou,^{a*} Wenjie Shen^a

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy

of Sciences, Dalian 116023, China. E-mail: zhouyan@dicp.ac.cn

^b University of Chinese Academy of Sciences, Beijing 100049, China.

Fig. S1 XPS spectra of Au 4f (a), Mo 3d (b), O 1s (c) and N 1s and Mo 3p (d) in the Au/ γ -Mo₂N samples. The binding energies at about 397.5 and 401 eV of N 1s peak are attributed to nitrogen of molybdenum nitride and chemisorbed NH₃, respectively. The binding energies at about 395.0, 396.0 and 399.0 eV of Mo 3p are assigned to Mo²⁺, Mo⁴⁺ and Mo⁶⁺, respectively.

Fig. S2 STEM images (a, b) and size-distribution of Au entities (c) in the Au-N-600 sample.

Fig. S3 STEM images and line-profile intensities of the Au-N-700 sample. Identification of Au bilayer and trilayer was done by comparing the profile intensities with that of the Au single-atoms.

Fig. S4 XPS spectra of Au 4f (a), Mo 3d (b), O 1s (c) and C 1s (d) in the Au/ α -MoC sample.

Fig. S5 STEM-EDS elemental mappings of the Au-C-600 sample.

Fig. S6 STEM images and line-profile intensities of the Au-C-700 sample. Identification of Au monolayer and bilayer was done by comparing the profile intensities with that of the Au single-atoms. The arrows indicated single-atoms.

Fig. S7 XRD patterns of the spent catalysts after WGS reaction at 200 °C.

Fig. S8 TEM images of the spent Au-N-700 (a, b) and Au-C-700 (c, d) catalysts after WGS reaction at 200 °C.

Fig. S9 TEM images of α -MoC.

Fig. S10 Water gas shift reaction over α -MoC at 200 °C. Reaction condition: 5 mg α -MoC with 195 mg quartz sand, a feed stream of 3.0 vol.% CO/6.0 vol.% H₂O/He mixture at the flowrate of 66.7 mL min⁻¹.

Fig. S11 Apparent activation energies (E_a) of the Au/ γ -Mo₂N and Au/ α -MoC catalysts.

Sample	Phase	Cell parameters (nm)	Crystal size (nm) ^a
Au-N-600	γ -Mo ₂ N	0.419	6.6
Au-N-700	γ -Mo ₂ N	0.421	9.7
Au-C-600	α-MoC	0.419	6.8
Au-C-700	α-ΜοC	0.422	5.5

Table S1. Cell parameters of γ -Mo₂N and α -MoC in the samples.

^a The crystal size was calculated from the FWHM of the {200} diffraction line.

Sample	Shell	R (Å) ^a	C.N. ^b	$\triangle E_0 (eV)^c$	$\sigma^2 (10^{-3} {\rm \AA}^2)^d$	R factor (%)
Au foil	Au–Au	2.86 ± 0.002	12.0 ± 0.04	5.6	8.0	0.3
Au-N-600	Au–Au	2.86 ± 0.03	8.7 ± 0.3	6.6	9.8	0.5
	Au–Mo	2.85 ± 0.09	0.4 ± 0.1		2.8	
Au-N-700 Au-N-700	Au–Au	2.83 ± 0.004	7.5 ± 0.9	2.8	10.6	0.9
	Au–Mo	2.83 ± 0.11	0.2 ± 0.4		18.6	
Au-C-600 A	Au–Au	2.88 ± 0.02	7.7 ± 1.0	7.6	19.7	0.7
	Au–Mo	2.87 ± 0.01	1.5 ± 0.6		8.7	
	Au–C	2.13 ± 0.03	0.5 ± 0.5		11.6	
Au-C-700	Au–Au	2.86 ± 0.01	7.3 ± 0.6	4.6	9.0	1.0
	Au–Mo	2.82 ± 0.03	1.3 ± 0.3		9.0	
	Au–C	2.16 ± 0.04	0.6 ± 0.3		9.0	

Table S2. Coordinating environments of Au from *R*-space fittings of Au L₃-edge EXAFS data.

^a Atomic distance; ^b Coordination number; ^c Difference of potential between the sample and the standard; ^d Debye-Waller factor.