Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Information of Application of machine learning to discover new intermetallic catalysts for the hydrogen evolution and the oxygen reduction reactions

Carmen Martínez-Alonso^{1,2,3}, Valentin Vassilev-Galindo¹, Benjamin M. Comer³, Frank Abild-Pedersen³, Kirsten T. Winther³, and Javier LLorca^{*1,4}

 ¹IMDEA Materials Institute, C/Eric Kandel 2, 28906 - Getafe, Madrid, Spain.
 ²Department of Inorganic Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
 ³SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States; SUNCAT Center for Interface Science and

Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.

⁴Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid, Spain.

May 20, 2024

^{*}To whom correspondence should be addressed: javier.llorca@upm.es , javier.llorca@imdea.org

Minimum and maximum values of the descripto	ors
---	-----

Descriptor	max value	min value
Unit cell volume	358.93 Å ³	10.49 Å ³
Weighted atomic radius (WAR)	$180 \mathrm{~pm}$	$127.5~\mathrm{pm}$
Generalized coordination number (GCN)	5.25	0.5
Weighted electronegativity (WEN)	2.4 (Pauling)	1.23 (Pauling)
Weighted first ionization energy (WIE)	$9.39~{ m eV}$	$5.86 \ \mathrm{eV}$
Outer electrons of A (S_A)	12	2
Outer electrons of B (S_B)	12	1
Ψ	106.73	3.41
Biaxial strain	-8.00%	8.00%

Table S 1: Minimum and maximum values of the descriptors.

Database details

True	H		0		OH		Cristana
Type	No Strain	Strain	No Strain	Strain	No Strain	Strain	System
Pure metals	72	125	70	126	68	107	24
AB $bcc(101)$	220	190	193	182	218	152	58
AB $fcc(101)$	14	0	14	0	0	0	8
$A_2B hcp(0001)$	21	0	19	0	0	0	6
A_3B fcc(111)	111	105	114	110	103	125	26
$A_3B hcp(0001)$	36	30	36	27	31	4	8

Table S 2: Number of entries in the databases.

Hyperparameter values

		0/011
Hyperparameter	$E_{\rm ads}^H$	$E_{\rm ads}^{O/OH}$
$n_{estimators}$	1000	1000
\max_{features}	9	10
$\min_samples_split$	4	3
$\min_samples_leaf$	1	1
\max_depth	600	300

Table S 3: Optimized hyperparameters for the Random Forest Regressor model in the prediction of the adsorption energy of hydrogen, oxygen, and hydroxyl.

Staichiamatur	Matarial	Calcula	ted by DFT	Materials Project		
Storemometry	Material	a (Å)	c (Å)	a (Å)	c (Å)	
	Pt	3.96	3.96	3.94	3.94	
	Ag	4.09	4.09	4.10	4.10	
٨	Au	4.16	4.16	4.17	4.17	
А	Ir	3.87	3.87	3.85	3.85	
	Pd	3.94	3.94	3.92	3.92	
	Co	2.49	4.04	2.47	4.03	
	AlFe	2.86	2.86	2.85	2.85	
	AlNi	2.89	2.89	2.86	2.86	
	AlRu	3.00	3.00	2.98	2.98	
	CuPd	3.02	3.02	2.98	2.98	
	DyIn	3.74	3.74	3.74	3.74	
AB	FeRh	3.00	3.00	2.99	2.99	
	HfRu	3.23	3.23	3.23	3.23	
	MgSc	3.58	3.58	3.60	3.60	
	NdZn	3.67	3.67	3.67	3.67	
	RuV	3.00	3.00	3.00	3.00	
	TiRe	3.12	3.12	3.11	3.11	
	$\mathrm{Fe}_{2}\mathrm{Zr}$	5.22	16.66	5.02	16.43	
	Os_2Y	5.21	8.98	5.28	8.93	
A_2D	$\mathrm{Re}_2\mathrm{Sm}$	5.24	8.98	5.45	8.93	
	$\mathrm{Ru}_{2}\mathrm{Sm}$	5.15	8.80	5.27	9.06	
	Al ₃ Li	4.02	4.02	4.00	4.00	
	$\rm Co_3 Ti$	3.60	3.60	3.59	3.59	
A_3B	In_3Sc	4.53	4.53	4.50	4.50	
	In_3Y	4.65	4.65	4.63	4.63	
	Ir_3Ti	3.87	3.87	3.86	3.86	
	$\mathrm{Ir}_{3}\mathrm{Zr}$	3.98	3.98	3.96	3.96	
	Pd_3Y	4.13	4.13	4.10	4.10	
	$\mathrm{Pt}_{3}\mathrm{In}$	4.05	4.05	4.02	4.02	
	${\rm Zn_3Mn}$	3.82	3.82	3.81	3.81	
	$\mathrm{Zn}_3\mathrm{Nb}$	3.94	3.94	3.91	3.91	
	$\mathrm{Zr}_{3}\mathrm{Al}$	4.38	4.38	4.38	4.38	

Calculation of equilibrium lattice parameters

Table S 4: Equilibrium lattice parameters (a and c) in Å. Displayed values calculated by DFT and obtained from Materials Project Database for all the different stoichiometries.

Feature distributions

Figure S 1: Feature distributions: Hydrogen adsorption database.

Figure S 2: Feature distributions: Oxygen and hydroxyl adsorption database.

Learning curves

Figure S 3: Learning curves: for the hydrogen (red) and the oxy-gen/hydroxyl (blue) machine learning models.

Verification parity plots

Figure S 4: Parity plot for the 30 verification candidates: Green signs represent the candidates that obtained accurate predictions by the RF model (MAE <0.25 eV). Red signs represent the candidates that obtained high errors (MAE >0.25 eV) by the RF model. Dots, triangles, and squares, illustrate the adsorption energies for H, O, and OH, respectively.

Optimum adsorption energies

HER

Material	Strain	Adsorption site	$E_{\rm ads}^H$ (eV)
Pt	0	FCC	-0.49
Ce3Ga	5	fccAAA	-0.49
Ce3In	5	fccAAA	-0.49
Ce3Sn	1	fccAAB	-0.49
Ir3W	-3	hcpAAA	-0.52
Nd3In	5	hcpAAA	-0.47
Ni3Fe	0	hcpAAB	-0.50
Ni3Pt	1	hcpAAA	-0.49
Pd3Ce	-1	fccAAB	-0.49
Pd3Dy	1	hcpAAA	-0.49
Pd3Fe	-5	fccAAA	-0.49
Pd3Nd	-3	hcpAAA	-0.49
Pd3Pr	-5	hcpAAA	-0.49
Pd3Sc	-3	fccAAA	-0.49
Pd3Sm	-5	hcpAAA	-0.47
Pd3Y	-3	fccAAA	-0.48
Pr3In	5	fccAAB	-0.48
Pt3Co	0	fccAAB	-0.49
Pt3Dy	0	hcpAAA	-0.49
Pt3Sc	-3	fccAAB	-0.49
Pt3Sm	-5	fccAAB	-0.49
Pt3Sn	-5	fccAAA	-0.50
Pt3Y	0	hcpAAA	-0.48
Rh3Mo	0	fccAAA	-0.46
$\mathrm{Sm}3\mathrm{In}$	3	hcpAAA	-0.47
Sn3Nd	5	fccAAB	-0.47
Sn3Sm	3	fccAAB	-0.49
Zn3Ti	-5	fccAAB	-0.48

Table S 5: Optimum hydrogen adsorption energies (in comparison with Pt at zero strain). The adsorption sites and the strains are indicated in the table.

ORR

Material	Strain	Adsorption site	$E_{\rm ads}^O$ (eV)	Strain	Adsorption site	$E_{\rm ads}^{OH}$ (eV)
Pt	0	FCC	-1.79	0	FCC	1.19
Ag3In	5	fccAAB	-1.79	-5	hcpAAA	1.15
ZnAu	3	threefoldAAB	-1.78	0	longbridgeB	1.36
Cu3Pt	-5	fccAAB	-1.79	3	ontopB	1.19
Ir3Sc	-1	ontopB	-1.94	-1	fccAAA	1.19
Ni3Pt	-5	hcpAAA	-1.89	3	ontopA	1.16
Pd3Dy	-1	fccAAB	-1.81	0	fccAAA	1.19
Pd3Sn	-5	fccAAB	-1.84	3	fccAAA	1.13
Pd3Sc	1	hcpAAA	-1.77	-5	fccAAA	1.00
Pt3Co	5	hcpAAA	-1.76	-1	hcpAAA	1.2
Pt3Dy	-1	hcpAAA	-1.79	1	ontopA	1.18
Pt3Mn	3	hcpAAA	-1.81	1	hcpAAA	1.17
Pt3Sc	-5	fccAAB	-1.84	-5	fccAAA	1.19
Pt3Sn	-5	fccAAB	-1.87	1	fccAAA	1.18
Pt3Y	5	hcpAAA	-1.75	0	fccAAA	1.06

Table S 6: Optimum oxygen and hydroxyl adsorption energies (in comparison with Pt at zero strain). The adsorption sites and the applied strain are indicated in the table.

Variation of E_{ads} with strain

Figure S 5: Variation of E_{ads}^H : From -5% compression to 5% tension for the 25 candidates with the most similar energies to pure platinum. The red vertical lines represent the E_{ads}^H at zero strain.

Figure S 6: Variation of E_{ads}^O : From -5% compression to 5% tension for the 13 candidates with the most similar energies to pure platinum. The red vertical lines represent the E_{ads}^O at zero strain.

Figure S 7: Variation of $E_{\rm ads}^{OH}$: From -5% compression to 5% tension for the 13 candidates with the most similar energies to pure platinum. The red vertical lines represent the $E_{\rm ads}^{OH}$ at zero strain.