Supporting information for

Dual-productive photoredox cascade catalyst for solar hydrogen production and methylarene oxidation

Atsushi Kobayashi*

Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan, <u>akoba@sci.hokudai.ac.jp</u>

Contents

Experimental section

Measurements and photocatalytic water reduction reaction

Table S1. Absorbance of each stock and supernatant solutions and the M_o , M_s , and M_i values of DDSP.

- Figure S1. UV-vis absorption spectra of the supernatant solutions obtained during the preparation of SDSP and DDSP.
- Figure S2. XRF spectrum and PXRD pattern of DDSP in the solid state.
- Figure S3. Emission spectra of [Ru(bpy)₃]Cl₂ in CH₃CN solution in the presence of 0-50 mM NHPI.
- **Figure S4**. Photocatalytic H₂ evolution by DDSP or Pt-TiO₂ in the presence of 30 mM NHPI, 50 mM pyridine, and 0.1 M ethylbenzene in CH₃CN under blue or UV light irradiation.
- **Figure S5.** Photocatalytic H₂ evolution by DDSP in the presence of 30 mM NHPI and 0.1 M ethylbenzene CH₃CN solution under blue-light irradiation in the absence or presence of 50, 150 mM pyridine.
- **Figure S6.** Comparison of ¹H NMR spectra of CD₃CN solution containing 30 mM NHPI, 50 mM pyridine-d⁵, and 0.1 M ethylbenzene before and after 5 h irradiation with DDSP.
- **Figure S7**. ¹H NMR spectrum of the reaction supernatant obtained by 5 h photocatalytic H₂ production in the presence of DDSP, 30 mM NHPI, 50 mM pyridine-d⁵, and 0.1 M ethylbenzene in CD₃CN.

Figure S8. UV-vis spectra of the reaction supernatant before and after photocatalytic H₂ evolution reaction by DDSP for 5 h in the presence of 30 mM NHPI, 50 mM pyridine and 0.1 M ethylbenzene, toluene, or cyclohexene.

- **Figure S9.** Photocatalytic H₂ evolution by DDSP in the presence of 100 mM NHPI, 170 mM pyridine, and 0.1 M ethylbenzene in CH₃CN under blue-light irradiation.
- Scheme S1. Possible reaction mechanism to form several different radical coupling products.
- **Figure S10.** Changes of ¹H NMR spectrum of CH₃CN solution containing 30 mM NHPI, 50 mM pyridine-d⁵, and 0.1 M ethylbenzene before and after 30, 60, 120, and 240 min light irradiation with DDSP.
- **Figure S11**. ¹H NMR spectrum of the supernatant obtained by 5 h photocatalytic H₂ production in the presence of DDSP, 30 mM NHPI, 50 mM pyridine-d⁵, 5 mM tetrabutylammonium iodide and 0.1 M ethylbenzene in CD₃CN.

- **Figure S12**. Photocatalytic H₂ evolution by DDSP in the presence of 30 mM NHPI, 50 mM pyridine and 0.1 M toluene or toluene-d⁸ in CH₃CN under blue light irradiation.
- **Figure S13.** ¹H NMR spectra of CD₃CN solutions containing 30 mM NHPI, 50 mM pyridine-d⁵, and 0.1 M cyclohexene before and after 5 h light irradiation with DDSP.
- **Figure S14**. ¹H NMR spectra of the reaction supernatant obtained by 5 h photocatalytic H₂ production in the presence of DDSP, 30 mM NHPI, 50 mM pyridine-d⁵, and 0.1 M cyclohexene in CD₃CN.
- **Figure S15.** ¹H NMR spectra of CD₃CN solutions containing 30 mM NHPI, 50 mM pyridine-d⁵, and 0.1 M toluene before and after 5 h light irradiation with DDSP.
- **Figure S16**. ¹H NMR spectra of the reaction supernatant obtained by 5 h photocatalytic H₂ production in the presence of DDSP, 30 mM NHPI, 50 mM pyridine-d⁵, and 0.1 M toluene in CD₃CN.

References

Experimental Section

Materials and Syntheses

Caution! Although we did not come across any difficulties, most of the chemicals used in this study are potentially harmful and should be used in small quantities and handled with care in a fume hood. All commercially available starting materials were used as received without further purification. The TiO₂ nanoparticles (CSB, ~7 nm in diameter) were purchased from Sakai Chemical Industry Co. Ltd. Pt-TiO₂ (1.4 wt%) was prepared using a previously reported photodeposition method.^{R1} Ru(II) molecular photosensitizers (**RuCP⁶** and **RuP⁶**) were synthesized using previously reported methods.^{R2}

Preparations of single- and dual-dye sensitized photocatalysts (SDSP and DDSP)

Single- and dual-dye sensitized Pt-TiO₂ photocatalysts, Zr^{4+} -**RuP**⁶@Pt-TiO₂, and Hf⁴⁺-**RuCP**⁶-Zr⁴⁺-**RuP**⁶@Pt-TiO₂ (SDSP, and DDSP) were synthesized by our previous procedure^{R3} for Ru(II)-dye-immobilized Pt-TiO₂ nanoparticles with several modification as follows. The immobilized amount of each Ru(II) PS was estimated by the UV-vis absorption spectrum of each supernatant isolated by the ultracentrifugation of Ru(II) PS immobilization reaction (**Figure S1** and **Table S1**).

<u>I. Immobilization of the first \mathbf{RuP}^6 dye.</u> 30 mg of Pt-TiO₂ nanoparticles were added and dispersed in ca. 2.5 mM \mathbf{RuP}^6 solution (6 mL). A 50 µL of 70%HClO₄ aq. solution was added to the dispersion solution and stirred overnight at 293 K in dark condition. The Ru(II)-dye-immobilized Pt-TiO₂ nanoparticles were isolated by ultracentrifugation (50,000 rpm, 15 min) and then twice washed with 0.1 mM HClO₄ aq. The \mathbf{RuP}^6 @Pt-TiO₂ were obtained by drying in air at 313 K for one night.

<u>II. Immobilization of Zr^{4+} cations to the phosphonates of Ru(II) dyes.</u> The well dried **RuP**⁶@Pt-TiO₂ nanoparticles were dispersed in 6 mL of MeOH solution of 20 mM ZrCl₂O·8H₂O and stirred for 1 h at 293 K in dark condition. The dispersed nanoparticles were collected by ultracentrifugation (50,000 rpm, 15 min) washed twice with MeOH, and then dried under air for one night at 313 K to afford the orange-colored SDSP, Zr^{4+} -**RuP**⁶@Pt-TiO₂.

<u>III. Immobilizations of the second **RuCP**⁶ dye and surface Hf⁴⁺ cations</u>. The second immobilization of Ru(II) dye was conducted in the almost the same procedure to that used for the first layer immobilization as mentioned above by using Zr^{4+} -**RuP**⁶@Pt-TiO₂ nanoparticles instead of Pt-TiO₂. The SDSP (Zr^{4+} -**RuP**⁶@Pt-TiO₂) nanoparticles were dispersed in ca. 2.5 mM **RuCP**⁶ solution (6 mL) and then acidified by addition of a 50 µL of 70%HClO₄ aq. solution. After stirring overnight at 293 K in dark condition, the dispersed nanoparticles were isolated by ultracentrifugation (50,000 rpm, 15 min) and then twice washed with 0.1 mM HClO₄ aq. The **RuCP**⁶-Zr⁴⁺-**RuP**⁶@Pt-TiO₂ nanoparticles were obtained by drying in air for one night at 313 K. Further treatment of **RuCP**⁶-Zr⁴⁺-**RuP**⁶@Pt-TiO₂ nanoparticles with HfCl₂O·8H₂O MeOH solution as mentioned above (see II. Immobilization of Zr⁴⁺ cations to the phosphonates of Ru(II) dyes) was conducted to form the Hf⁴⁺-cation modified Ru(II)-dye-double-layered nanoparticle Hf⁴⁺-**RuCP**⁶-Zr⁴⁺-**RuP**⁶@Pt-TiO₂ (DDSP).

Measurements

UV-vis absorption spectra were recorded on a JASCO V-750 spectrophotometer. Emission spectra were recorded on a JASCO FP-8550 spectrofluorometer at 298 K and each sample solution was deoxygenated by N₂ bubbling for 30 min at 293 K. Energy-dispersive XRF spectra were recorded using a Bruker S2 PUMA analyzer. ¹H- and ¹³C-NMR spectra at room temperature were recorded on an ECZ-400S NMR spectrometer. Powder X-ray diffraction studies were conducted using a Bruker D8 Advance diffractometer equipped with a graphite monochromator employing Cu Kα radiation and a one-dimensional LynxEye detector.

Photocatalytic water reduction reaction

Under dark conditions, a CH₃CN solution containing NHPI, pyridine (50 mM), 0.1 M substrate (ethylbenzene, cyclohexene, toluene or toluene-d₈) and DDSP nanoparticles (100 μ M of the Ru(II) dye) was placed into a homemade Schlenk flask-equipped quartz cell (volume: 145 mL) with a small magnetic stirring bar. Each sample flask was doubly sealed with rubber septa. This mixed solution was deoxygenated by Ar bubbling for 1 h. The flask was then irradiated from the side and bottom with two blue LED lamps ($\lambda = 467 \pm 30$ nm; 550 mW; HepatoChem Ltd., HCK1012-01-32). The temperature was controlled at 293 K using an air circulating system (HepatoChem Ltd., HCK1006-01-023). The gas samples (0.6 mL) for each analysis were collected from the headspace using a gastight syringe (Valco Instruments Co. Inc.). The amount of evolved H₂ was determined using a gas chromatograph (Agilent 490 Micro Gas Chromatograph). The turnover number and turnover frequency per Ru dye (PS TON and PS TOF) were estimated from the amount of evolved H₂; two photoredox cycles of the Ru(II) PS are required to produce one H₂ molecule. Each photocatalytic H₂ evolution reaction was conducted under the same conditions three times, and the average value with standard deviation is reported. The detection limit of this gas chromatography analysis for H₂ gas was 0.05 µmol. The AQY was calculated using the following equation:

$$AQY = N_e/N_p = 2N_{H2}/N_p,$$

Here, N_e represents the number of reacted electrons, N_{H2} is the number of evolved H_2 molecules, and N_p is the number of incident photons.

Calculation of the amount of Ru(II) complex immobilized on the Pt-TiO2 nanoparticles

To estimate the amount of immobilized Ru(II) complexes on Pt-TiO₂ nanoparticle, UV-vis absorption spectra of each supernatant solution used for the immobilization reaction was measured (**Figure S1**). The Ru(II) complex concentration used for the UV-Vis absorption spectral measurement (C_A) is estimated by Equation (1) based on the Lambert-Beer law.

 $A = C_A \cdot l \cdot \varepsilon \quad (Eq. 1)$ $A = \text{absorbance}, C_A = \text{concentration of the Ru(II) complex},$ $l = \text{cell path length (1 cm)}, \varepsilon = \text{molar absorption coefficient}$

The absorbance at the ¹MLCT absorption band of each complex (**RuP**⁶: 464 nm, **RuCP**⁶: 465 nm) and their corresponding molar absorption coefficients (**RuP**⁶: 16,350; **RuCP**⁶: 14,249) enable us to estimate the concentration of the Ru(II) complex that was not immobilized in the reaction. Since a 50-fold diluted aqueous solution was used in each measurement, the concentration of the original supernatant solution (C_B) is calculated by $C_B = C_A \times 50$. The total volume of the supernatant solution is 6.05 mL (see "Preparation of dual-dye-sensitized photocatalyst" section). Thus, the amount of Ru(II) complexes in the supernatant solution (M_S) is estimated by Equation (2).

$$M_s = C_B \times \frac{6.05}{1000} \text{ (mol)} \text{ (Eq. 2)}$$

Finally, the molar amount of the Ru(II) complex immobilized on the TiO₂ surface (M_i) can be estimated by Equation (3).

$$M_i = M_o - M_s \text{ (mol) } (Eq. 3)$$

where M_o denotes the molar amount of the Ru(II) complex in the stock solution of Ru(II) complex used for the immobilization reaction. The results are summarized in **Table S1**.

Calculation of the surface coverage of Ru(II) complexes per unit area of TiO₂

Assuming that the TiO₂ nanoparticles are spherical, we simply calculated the surface area on the TiO₂ nanoparticle (S_m) using Equation (4). In these calculations, the effect of the loaded Pt co-catalyst was omitted.

$$S_m = 4 \cdot \pi \cdot \left(\frac{a}{2} \times 10^{-7}\right)^2$$
 (cm² per one particle) (*Eq.* 4)

a = Averaged particle diameter of TiO₂ nanoparticle (7 nm)

Since the calculated surface area (S_m) based on Equation (4) corresponds to only one TiO₂ nanoparticle, it is necessary to determine the number of TiO₂ nanoparticles (P_t) contained in 30 mg to estimate the total surface area of TiO₂ (S_t) used in the immobilization reaction of the Ru(II) complexes. The total volume of 30 mg of TiO₂ nanoparticles (V_t) can be calculated using Equation (5) based on the density of TiO₂ (anatase TiO₂ = 3.90 g/cm³).

$$V_t = \frac{30 \times 10^{-3} \text{ (g)}}{3.90 \text{ (g/cm}^3)} \text{ (cm}^3\text{)} \text{ (Eq. 5)}$$

The number of TiO₂ nanoparticles (P_t) in 30 mg is also estimated using Equations (6) and (7) based on the volume of one TiO₂ nanoparticle (V_m) and the total volume (V_t).

$$V_m = \frac{4}{3} \cdot \pi \cdot \left(\frac{a}{2} \times 10^{-7}\right)^3 \text{ (cm}^3 \text{ per one particle) } (Eq. 6)$$
$$P_t = \frac{V_t}{V_m} \quad (Eq. 7)$$

Then, the total surface area of 30 mg of $TiO_2(S_t)$ can be estimated by Equation (8).

$$S_t = S_m \times P_t \text{ (cm}^2) \quad (Eq.8)$$

The amount of immobilized Ru(II) complexes per unit area of TiO₂ (Surface coverage: *N*) is estimated by Equation (9) based on the amount of immobilized Ru(II) complex (M_i) and the total surface area of 30 mg of TiO₂ (S_t). The estimated *N* and M_i values are summarized in **Table S1**.

$$N = \frac{M_i}{S_t} \; (\text{mol/cm}^2) \; (Eq. \; 9)$$

Table S1. Absorbance of each stock and supernatant solutions and the M_o , M_s , and M_i values of DDSP = Hf⁴⁺-RuCP⁶-Zr⁴⁺-RuP⁶@Pt-TiO₂.

Photocatalyst	Immobilized Ru(II) PS	A_{stock}	Mo (µmol)	A_{super}	Ms (µmol)	M _i (µmol)	Surface coverage N (nmol / cm ²)	Footprint (nm ²)
DDSP	1st (inner) layer RuP⁶	0.9396	17.63	0.2300	4.316	13.31	0.2018	0.8227
	2nd (outer) layer RuCP ⁶	0.8313	17.89	0.5471	11.78	6.110	0.09277	1.791
(a) ⁵			-	(b) ⁵				
4				4				
Absorbance 5 Absorbance 5 Absorbance			-	Absorbance				-
1	RuF ⁶ Sto	ck aq			6	RuCP ⁶ sto	ock aq. ant	

Figure S1. UV-vis absorption spectra of the stock and supernatant (blue and red lines) solutions obtained during the preparations of (a) Zr^{4+} -**RuP**⁶@Pt-TiO₂ (SDSP) and (b) Hf⁴⁺-**RuCP**⁶-Zr⁴⁺-**RuP**⁶@Pt-TiO₂ (DDSP) at 298 K.

0 └─

Wavelength / nm

Supernatant

Wavelength / nm

0 └─

Figure S2. (top) Solid-state XRF spectrum and (bottom) powder XRD pattern of Hf⁴⁺-**RuCP⁶**-Zr⁴⁺-**RuP⁶**@Pt-TiO₂ (DDSP) at 298 K in air.

Figure S3. Emission spectra of CH₃CN solution of 100 μ M [Ru(bpy)₃]Cl₂ in the presence of 0 to 50 mM NHPI at 293 K. Black dashed line shows the spectrum of DDSP dispersed in CH₃CN ([Ru] = 100 μ M) obtained in the same experimental condition. ($\lambda_{ex} = 465$ nm)

Figure S4. Photocatalytic H₂ evolution by DDSP (red; Ru(II) dye concentration was 100 μ M) or Pt-TiO₂ (black; the amount was 1.04 mg that is almost equal to the amount of Pt-TiO₂ in DDSP) in the presence of 30 mM NHPI, 50 mM pyridine, and 0.1 M ethylbenzene (EB) in CH₃CN under blue or UV light irradiation ($\lambda = 470 \pm 30$ nm, 110 mW for 0-3 h, and 365 \pm 20 nm, 95 mW for 3-5 h).

Figure S5. Photocatalytic H₂ evolution by DDSP in the presence of 30 mM NHPI and 0.1 M ethylbenzene (EB) CH₃CN solution under blue-light irradiation ($\lambda = 467 \pm 30$ nm; 550 mW) in the (blue open circle) absence or presence of (red) 50, (green) 150 mM pyridine. The Ru(II) dye concentration was 100 µM for all reactions.

Figure S6. Comparison of ¹H NMR spectra (top and bottom: aliphatic and aromatic regions) of CD₃CN solution containing 30 mM NHPI, 50 mM pyridine- d^5 , and 0.1 M ethylbenzene (black) before and (red) after 5 h light irradiation with DDSP ([Ru] = 100 μ M). Blue lines show the spectra of the solution obtained by the 18 h photocatalytic H₂ evolution reaction in the presence of 5 mM tetrabutylammonium iodide (TBAI).

Figure S7. ¹H NMR spectra of the reaction supernatant obtained by 5 h photocatalytic H₂ production in the presence of DDSP ([Ru] = 100 μ M), 30 mM NHPI, 50 mM pyridine-d⁵, and 0.1 M ethylbenzene in CD₃CN.

Figure S8. UV-vis absorption spectra of the reaction supernatant (black) before and (red) after photocatalytic H_2 evolution reaction by DDSP for 5 h in the presence of 30 mM NHPI, 50 mM pyridine and 0.1 M (a) ethylbenzene (EB), (b) toluene (Tol), or (c) cyclohexene (*c*-hex), CH₃CN solution.

Figure S9. Photocatalytic H₂ evolution by DDSP in the presence of NHPI, pyridine, and 0.1 M ethylbenzene (EB) in CH₃CN under blue-light irradiation ($\lambda = 467 \pm 30$ nm; 550 mW). The Ru(II) dye concentration was 100 μ M for all reactions.

Scheme S1. Possible reaction mechanism to form several different byproducts.

Figure S10. Changes of ¹H NMR spectrum of CH₃CN solution containing 30 mM NHPI, 50 mM pyridine-d⁵, and 0.1 M ethylbenzene (black) before and after (blue) 30, (orange) 60, (red) 120, and (green) 240 min light irradiation with DDSP ([Ru] = 100μ M).

Figure S11. ¹H NMR spectra of the reaction supernatant obtained by 18 h photocatalytic H₂ production in the presence of DDSP ([Ru] = 100 μ M), 30 mM NHPI, 50 mM pyridine-d⁵, 5 mM tetrabutylammonium iodide (TBAI) and 0.1 M ethylbenzene (EB) in CD₃CN. The signals assigned to the radical coupling product (EB-PINO) between EB• and PINO• are labelled as "Product".

Figure S12. Photocatalytic H₂ evolution by DDSP in the presence of 30 mM NHPI, 50 mM pyridine and 0.1 M toluene (closed circles) or toluene-d⁸ (open triangles) in CH₃CN under blue light irradiation ($\lambda = 467 \pm 30$ nm; 550 mW). Open squares show the result in which pyridine and CH₃CN were replaced by their deuterated ones (Py-d⁵ and CD₃CN). The Ru(II) dye concentration was 100 µM for all reactions.

Figure S13. ¹H NMR spectra of CD₃CN solutions containing 30 mM NHPI, 50 mM pyridine-d⁵, and 0.1 M cyclohexene (black) before and (red) after 5 h light irradiation with DDSP. Observed signals at 0.89 and 1.28 ppm labelled as "*n*-hex" are derived from slightly contaminated *n*-hexane used to remove vacuum grease.

Figure S14. ¹H NMR spectra of the reaction supernatant obtained by 5 h photocatalytic H₂ production in the presence of DDSP ([Ru] = 100 μ M), 30 mM NHPI, 50 mM pyridine-d⁵, and 0.1 M cyclohexene in CD₃CN. The signals assigned to the radical coupling product (*c*-hex-PINO) between *c*-hex[•] and PINO[•] are labelled as "Product". Observed signals at 0.89 and 1.28 ppm labelled as "*n*-hex" are derived from slightly contaminated *n*-hexane used to remove vacuum grease. Signals of the aliphatic protons of *c*-hex-PINO at the cyclohexene ring would be overlapped with that of unreacted *c*-hex.

Figure S15. ¹H NMR spectra of CD₃CN solutions containing 30 mM NHPI, 50 mM pyridine- d^5 , and 0.1 M toluene (black) before and (red) after 5 h light irradiation with DDSP. Observed signals at 0.89 and 1.28 ppm labelled as "*n*-hex" are derived from slightly contaminated *n*-hexane used to remove vacuum grease.

Figure S16. ¹H NMR spectra of the reaction supernatant obtained by 5 h photocatalytic H₂ production in the presence of **DDSP** ([Ru] = 100 μ M), 30 mM NHPI, 50 mM pyridine-d⁵, and 0.1 M toluene in CD₃CN. Signals assigned to the radical coupling products (Tol-PINO) between Tol• and PINO• are labelled as "Product-A" and "Product-B", according to the literature about the electrochemical Tol oxidation mediated by NHPI.^{R4} Observed signals at 0.89 and 1.28 ppm labelled as "*n*-hex" are derived from slightly contaminated *n*-hexane used to remove vacuum grease.

References

- R1. H. Park, W. Choi, M. R. Hoffmann, Effects of the preparation method of the ternary CdS/TiO₂/Pt hybrid photocatalysts on visible light-induced hydrogen production. *J. Mater. Chem.*, 2008, **18**, 2379–2385.
- R2. K. Hanson, M. K. Brennaman, A. Ito, H. Luo, W. Song, K. A. Parker, R. Ghosh, M. R. Norris, C. R. K. Glasson, J. J. Concepcion, R. Lopez, T. J. Meyer, Structure–Property Relationships in Phosphonate-Derivatized, Ru^{II} Polypyridyl Dyes on Metal Oxide Surfaces in an Aqueous Environment. *J. Phys. Chem. C*, 2012, **116**, 14837–14847.
- R3. N. Yoshimura, A. Kobayashi, M. Yoshida, M. Kato, Enhancement of Photocatalytic Activity for Hydrogen Production by Surface Modification of Pt-TiO₂ Nanoparticles with a Double Layer of Photosensitizers, *Chem. Eur. J.*, 2020, 26, 16939–16946.
- R4. M. A. Hoque, J. Twilton, J. Zhu, M. D. Graaf, K. C. Harper, E. Tuca, G. A. DiLabio, S. S. Stahl, Electrochemical PINOylation of Methylarenes: Improving the Scope and Utility of Benzylic Oxidation through Mediated Electrolysis, J. Am. Chem. Soc., 2022, 144, 15295-15302.