Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting Information (SI):

Ampere-level oxygen evolution reaction driven by Co_3O_4 nanoparticles supported on the layered TiO_2

Hong Tang^a, Wei Wu^a, Takahiro Kojima^a, Kenji Kazumi^b, Kazuhiro Fukami^b and Hiroshi Sakaguchi^{*a}

a Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan

b Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan

* Corresponding author

E-mail: sakaguchi@iae.kyoto-u.ac.jp

Fig. S1 XPD pattern of layered-TiO₂.

Fig. S2 XPD pattern of Co₃O₄.

Fig. S3 XPS survey spectrum of Co_3O_4 @layered-TiO₂.

Fig. S4 SEM image of layered-TiO₂.

Fig. S5 SEM image of Co₃O₄.

Fig. S6 Statistical analysis of particle size distribution of Co_3O_4 nanoparticles on TiO_2 substrate.

Fig. S7 HR-TEM image of Co₃O₄@layered-TiO₂.

Fig. S8 SEAD image of Co_3O_4 in Co_3O_4 @layered-TiO₂.

Fig. S9 SEAD image of TiO_2 in Co_3O_4 @layered- TiO_2 .

Fig. S10 EDX image of Co_3O_4 @layered-TiO₂.

Fig. S11 EIS spectrum of Co₃O₄@layered-TiO₂. Insert shows equivalent circuit.

Fig. S12 LSV curves of Co_3O_4 @layered-TiO₂ under different annealing temperatures (250, 300 and 350 °C).

Fig. S13 SEM image of Co_3O_4 (a) layered-TiO₂ after galvanostatic measurement.

Fig. S14 CV curves of Co_3O_4 @layered-TiO₂ in 1.0 M KOH.

Fig. S15 CV curves of RuO_2 in 1.0 M KOH.

Fig. S16 CV curves of Co₃O₄ in 1.0 M KOH.

Fig. S17 Optimized structural model of TiO₂-Co₃O₄.

Fig. S18 Optimized the structural model after adsorbing OH on the Co site of TiO_2 -Co₃O₄.

Fig. S19 Optimized the structural model after adsorbing O on the Co site of TiO_2 -Co₃O₄.

Fig. S20 Optimized the structural model after adsorbing OOH on the Co site of TiO_2 -Co₃O₄.

Reference		Catalyst
1	our work	TiO ₂ -Co ₃ O ₄
2	J. Alloys Compd. 2021, 853, 156946	Co ₃ O ₄ -MoS ₂ thin films
3	Adv. Energy Sustainability Res. 2023,	Co ₃ O ₄ /CeO ₂ heterojunction
	4, 2300123	nanonetworks
4	ACS Appl. Energy Mater. 2020, 3,	n-Co ₃ O ₄
	5439-5447	
5	Carbon Energy 2023, 5, 279	Mo-Co ₃ O ₄ @CC
6	ACS Catal. 2022, 12, 13482-13491	Ir _{0.33} @Co ₃ O4
7	Angew. Chem. Int. Ed. 2020, 59,	CoO/Co ₃ O ₄
	6929 - 6935	
8	Adv. Mater. 2018, 30, 1801211	Co ₃ O ₄ /Co-Fe oxide
9	Adv. Energy Mater. 2021, 11,	NiMoO ₄ @Co ₃ O ₄
	2101324	
10	ACS Catal. 2018, 8, 2236-2241	P _{8.6} -Co ₃ O ₄ /NF
11	ACS Catal. 2023, 13, 2462-2471	Ru/Co ₃ O _{4-x}
12	Adv. Mater. 2020, 32, 2002235	Fe-Co ₃ O ₄
13	Adv. Energy Mater. 2018, 8, 1701694	O-Co ₃ O ₄
14	Adv. Energy Mater. 2023, 13,	Ir/Ni-Co ₃ O ₄
	2302537	

Table S1. Previously reported literature of splendid Co₃O₄-based oxygen evolution catalysts.