Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synergistic promotion of oxygen vacancy and Lewis acidity of Nb₂O₅ on the preferential hydroxymethyl hydrogenolysis of 5-hydroxymethylfurfural catalyzed by single atom Pt

Ting-Hao Liu,^a Shuai Fu,^a Jing-Tao Gou,^a Yin-Sheng Zhang,^a Chang-Wei Hu,^b Hua-Qing Yang^{a*} ^aCollege of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China ^bKey Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P.R. China

*Correspondence to:

H.-Q. Yang; e-mail: <u>huaqingyang@scu.edu.cn;</u> Fax: +86-28-85464466 Telephone: +86-28-85464466

SI

Catalo)g
--------	----

Evaluation of rate constants:
The equations for calculating TOF according to the energetic span model:
The relative Gibbs free energies of two oxygen defective Nb ₂ O ₅ (010) models are computed by the
following equation, eq(S1):7
Description of the calculation method for the stability of Pt_1/Nb_2O_5 -Ov1 and Pt_1/Nb_2O_5 -Ov27
The relative Gibbs free energies of H_2 adsorption over Pt_1/Nb_2O_5 -Ovx are computed by the
following equation, eq(S3):7
Fig. S1. Pt_1/Nb_2O_5 model; atoms shown in red, blue, and orange represent O, Nb, and Pt atoms,
respectively
Fig. S2. $Nb_2O_5(010)$ model; atoms shown in red and blue represent O and Nb atoms, respectively,
(a) Top view. (b) Side view. (c) and (d) two different O vacancies $Nb_2O_5(010)$ models on
$Nb_2O_5(010)$ named Nb_2O_5 -Ov1 and Nb_2O_5 -Ov2, respectively. The dotted circles label the missing
oxygens (vacancies)9
Fig. S3. (a) $Pt_1/Nb_2O_5\text{-}Ov1$ and (b) $Pt_1/Nb_2O_5\text{-}Ov2$ are the two types of oxygen defective
Nb ₂ O ₅ (010) model supported platinum single-atom catalysts, respectively. Bond lengths are
reported in Å. Hirshfeld charge of Pt atom is shown in orange. The relative Gibbs free energies (G_r ,
kJ mol ⁻¹) shown in brackets
Fig. S4. (a) $\rm H_2\text{-}Pt_1/Nb_2O_5\text{-}Ov1$ (1-v-IM1) and (b) $\rm H_2\text{-}Pt_1/Nb_2O_5\text{-}Ov2$ are the optimized geometric
structures of H_2 adsorption over Pt_1/Nb_2O_5 -Ov1 and Pt_1/Nb_2O_5 -Ov2, respectively, Bond lengths are
reported in Å. Hirshfeld charge of Pt atom is shown in orange. The relative Gibbs free energies (G_r ,
kJ mol ⁻¹) are shown in brackets
Fig. S5. The adsorption modes for HMF, DHMF, and 5-MFA over Nb-site of Pt_1/Nb_2O_5 -OV (upper
row) and over Pt-site of Pt_1/Nb_2O_5 -OV (bottom row), respectively, Bond lengths are reported in Å.
The relative Gibbs free energies $(G_r, kJ mol^{-1})$ are shown
Fig. S6. The geometric structures and the relative Gibbs free energy $(G_r, kJ mol^{-1})$ relative to HMF-2
for eight conformers of HMF in THF solution at the G4 level. For clarity, hydrogen atoms on carbon
are not shown. Bond lengths are reported in Å
Fig. S7. The optimized geometric structures (a) and the schematic energy diagrams (b) with the
Gibbs free energy (G_r , kJ mol ⁻¹) relative to the reactants for catalytical hydrogenolysis of HMF to
5-MF over [OPtNb]. Bond lengths are reported in Å
Fig. S8. The optimized geometric structures (a) and the schematic energy diagrams (b) with the
Gibbs free energy (Gr, kJ mol ⁻¹) relative to the reactants for catalytical hydrogenolysis of DHMF to
5-MFA over [OPtNb]. Bond lengths are reported in Å
Fig. S9. The optimized geometric structures (a) and the schematic energy diagrams (b) with the
Gibbs free energy (Gr, kJ mol ⁻¹) relative to the reactants for catalytical hydrogenolysis of 5-MFA
to DMF over [OPtNb]. Bond lengths are reported in Å16
Fig. S10. The optimized geometric structures (a) and the schematic energy diagrams (b) with the
Gibbs free energy (Gr, kJ mol ⁻¹) relative to the reactants for catalytical hydrogenolysis of HMF to
DHMF over [OPtNb]. Bond lengths are reported in Å17
Fig. S11. The optimized geometric structures (a) and the schematic energy diagrams (b) with the
Gibbs free energy (G_r , kJ mol ⁻¹) relative to the reactants for catalytical hydrogenation of 5-MF to
MFA over [OPtNb]. Bond lengths are reported in Å

Gibbs free energy (G_r , kJ mol ⁻¹) relative to the reactants for catalytical hydrogenolysis of HMF to
5-MF over [OPtNb-Ov]. Bond lengths are reported in Å19
Fig. S13. The optimized geometric structures (a) and the schematic energy diagrams (b) with the
Gibbs free energy (G_r , kJ mol ⁻¹) relative to the reactants for catalytical hydrogenolysis of DHMF to
5-MFA over [OPtNb-Ov]. Bond lengths are reported in Å20
Fig. S14. The optimized geometric structures (a) and the schematic energy diagrams (b) with the
Gibbs free energy (G_r , kJ mol ⁻¹) relative to the reactants for catalytical hydrogenolysis of 5-MFA to
DMF over [OPtNb-Ov]. Bond lengths are reported in Å
Fig. S15. Arrhenius plots of rate constants for the crucial reaction step of 1-o-IM2 \rightarrow 1-o-TS1 in
the reaction of HMF-to-5-MF hydrogenolysis catalyzed by Pt ₁ /Nb ₂ O ₅ in THF solution22
Fig. S16. Arrhenius plots of rate constants for the crucial reaction step of 3-o-IM4 \rightarrow 3-o-
TS1(before) in the reaction of HMF-to-DHMF hydrogenation catalyzed by Pt ₁ /Nb ₂ O ₅ in THF
solution
Fig. S17. Arrhenius plots of rate constants for the crucial reaction step of 1-o-IM6 + H ₂ + 5-MF \rightarrow
4-o-TS1 + H ₂ O in the reaction of HMF-to-DMF hydrogenation catalyzed by Pt_1/Nb_2O_5 in THF
solution
Fig. S18. Arrhenius plots of rate constants for the crucial reaction step of 1-v-IM4 \rightarrow 1-v-TS1
(before) in the reaction of HMF-to-5-MF hydrogenolysis catalyzed by Pt ₁ /Nb ₂ O ₅ -Oy in THF
solution
Fig. S19. Arrhenius plots of rate constants for the crucial reaction step of 3-v-IM2 \rightarrow 3-v-TS1 in
the reaction of HME-to-DHME hydrogenation catalyzed by Pt_1/Nb_2Oc-Ov in THE solution 26
Fig. S20 Arrhenius plots of rate constants for the crucial reaction step of 1-y-IM4 + $H_2 \rightarrow 4$ -y-TS1
+ H_2O in the reaction of HME-to-DME hydrogenation catalyzed by $Pt_1/Nb_2O_2O_2$ in THE solution
Table S1. Over the 325 ~ 525 K temperature range, the rate constant ratios of $k_{\rm HOH} / k_{\rm HOH}$, $k_{\rm HOH}$
$\frac{1}{k_{\rm r}} \frac{k_{\rm r}}{k_{\rm r}} = \frac{1}{k_{\rm r}} \frac{1}{k$
Table S2 Zero-point vibrational energies (<i>ZPVE</i> hartree) sum of electronic energies in the gas
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution (E_t), hartree), sum of electronic and thermal Gibbs free energies
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_0 , hartree) and relative Gibbs free energies ($G_{t, l}$, kI mol ⁻¹) of various species with respect to the
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, 1}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, 1}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HME-to-5-ME over Pt ₁ /N ₂ O ₅ .
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, 1}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, 1}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt ₁ /N ₂ O ₅
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, 1}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, 1}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt ₁ /N ₂ O ₅
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, 1}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, 1}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt ₁ /N ₂ O ₅
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, 1}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, 1}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt ₁ /N ₂ O ₅
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, 1}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, 1}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt ₁ /N ₂ O ₅
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, 1}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, 1}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt ₁ /N ₂ O ₅
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, 1}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, 1}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt ₁ /N ₂ O ₅
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt ₁ /N ₂ O ₅
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution (E_t , l, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt ₁ /N ₂ O ₅
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt ₁ /N ₂ O ₅
phase (E_{t} , g, hartree), thermal correction to Gibbs free energies (G_{0} , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_{c} , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt ₁ /N ₂ O ₅
phase (E_{t} , g, hartree), thermal correction to Gibbs free energies (G_{0} , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_{c} , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt ₁ /N ₂ O ₅

energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies
(G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol ⁻¹) of various species with respect to the
reactants for the reaction of HMF-to-DHMF over Pt1/N2O5
Table S6. Zero-point vibrational energies (ZPVE, hartree), sum of electronic energies in the gas
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic
energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies
$(G_{c}, hartree)$ and relative Gibbs free energies $(G_{r, l}, kJ mol^{-1})$ of various species with respect to the
reactants for the reaction of 5-MF-to-5-MFA over Pt1/N2O5
Table S7. Zero-point vibrational energies (ZPVE, hartree), sum of electronic energies in the gas
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic
energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies
$(G_{c}, hartree)$ and relative Gibbs free energies $(G_{r, l}, kJ mol^{-l})$ of various species with respect to the
reactants for the reaction of HMF-to-5-MF over Pt1/N2O5-Ov
Table S8. Zero-point vibrational energies (ZPVE, hartree), sum of electronic energies in the gas
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic
energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies
(G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol ⁻¹) of various species with respect to the
reactants for the reaction of DHMF-to-5-MFA over Pt ₁ /N ₂ O ₅ -Ov35
Table S9. Zero-point vibrational energies (ZPVE, hartree), sum of electronic energies in the gas
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic
energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies
(G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol ⁻¹) of various species with respect to the
reactants for the reaction of 5-MFA-to-DMF over Pt ₁ /N ₂ O ₅ -Ov
Table S10. Zero-point vibrational energies (ZPVE, hartree), sum of electronic energies in the gas
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic
energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies
(G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol ⁻¹) of various species with respect to the
reactants for the reaction of HMF-to-DHMF over Pt ₁ /N ₂ O ₅ -Ov
Table S11. Zero-point vibrational energies (ZPVE, hartree), sum of electronic energies in the gas
phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic
energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies
(G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol ⁻¹) of various species with respect to the
reactants for the reaction of 5-MF-to-5-MFA over Pt ₁ /N ₂ O ₅ -Ov

Evaluation of rate constants:

The rate constants k(T) was evaluated according to conventional transition state theory k'(T), including the tunneling correction $\kappa(T)$ based on Wigner's formulation as follows:¹

$$k'(T) = \frac{k_{\rm B}T}{hc^0} \cdot e^{\frac{-\Delta G^*}{RT}}$$
(i)

$$\kappa(T) = 1 + \frac{1}{24} \left| \frac{w^{\neq} h}{k_{\rm B} T} \right|^2$$
(ii)

$$k(T) = \kappa(T) \times k'(T) \tag{iii}$$

$$\ln k(T) = -\frac{E_a}{RT} + \ln A$$
 (iv)

$$k(T) = \mathbf{A} \cdot e^{\frac{-E\mathbf{a}}{RT}} \tag{V}$$

where $k_{\rm B}$ is Boltzmann's constant, *T* is the absolute temperature, *h* is Planck's constant, c^0 is the standard concentration (1 mol dm⁻³), ΔG^{\neq} is the activation Gibbs free energy barrier and ω^{\neq} is the imaginary frequency of the TS, A is preexponential factor.

References:

1. E. Wigner, J. Chem. Phys. 1937, 5, 720-723.

The equations for calculating TOF according to the energetic span model:

The efficiency of catalyst can be determined by the turnover frequency (TOF) of the catalytic cycle. Based on the transition state theory (TST), the TOF can be calculated by Eqs. (i) and (ii) proposed by Kozuch et al., in which δE (the energetic span) is defined as the energy difference between the summit and trough of the catalytic cycle.²⁻⁷

$$\Gamma OF = \frac{k_{\rm B}T}{h} e^{-\delta E/RT}$$

$$\delta E = \begin{pmatrix} G_{\text{TDTS}} - G_{\text{TDI}} & \text{if TDTS appears after TDI} \\ G_{\text{TDTS}} - G_{\text{TDI}} + \Delta G_{\text{r}} & \text{if TDTS appears before TDI} \end{pmatrix}$$

where $k_{\rm B}$ is the Boltzmann constant, *T* is the absolute temperature, and *h* is the Planck constant. $G_{\rm TDTS}$ and $G_{\rm TDI}$ are the Gibbs free energies of the TOF determining transition state (TDTS) and the TOF determining intermediate (TDI), and $\Delta G_{\rm r}$ is the global free energy of the whole cycle.

References:

- 2. C. Amatore and A. Jutand, J. Organomet. Chem., 1999, 576, 254-278.
- 3. S. Kozuch and S. Shaik, J. Am. Chem. Soc., 2006, 128, 3355-3365.
- 4. S. Kozuch and S. Shaik, J. Phys. Chem. A, 2008, 112, 6032-6041.
- 5. S. Kozuch and S. Shaik, Acc. Chem. Res., 2011, 44, 101-110.
- 6. A. Uhe, S. Kozuch and S. Shaik, J. Comput. Chem., 2011, 32, 978-985.
- 7. S. Kozuch, ACS Catal., 2015, 5, 5242-5255.

The relative Gibbs free energies of two oxygen defective Nb₂O₅ (010) models are computed by the following equation, eq(S1):

$$G_{\rm r} = G_{\rm Nb_2O_5 - ovx} + \frac{1}{2}G_{\rm O_2} - G_{\rm Nb_2O_5} \dots eq(S1)$$

 $G_{\rm r}$ is the relative Gibbs free energy of the formation of oxygen vacancies on Nb₂O₅ (010), $G_{\rm Nb2O5}$. _{ovx}, $G_{\rm Nb2O5}$ and $G_{\rm O2}$ are the Gibbs free energies of Nb₂O₅ (010) with oxygen vacancies, Nb₂O₅ (010) and the ground-state Oxygen molecule, respectively, *x* is equal to 1 and 2.

Description of the calculation method for the stability of Pt₁/Nb₂O₅-Ov1 and Pt₁/Nb₂O₅-Ov2:

Two types of oxygen defective Nb₂O₅ (010) model supported platinum catalyser models were built in this work, which are named Pt_1/Nb_2O_5 -Ov1 and Pt_1/Nb_2O_5 -Ov2, respectively. First, one O1 or one O2 atom was removed from the Nb₂O₅ (010) model to obtain Nb₂O₅-Ov1 and Nb₂O₅-Ov2, respectively. Then, a platinum atom was placed at the surface of oxygen defective Nb₂O₅ (010) model, coordinating with an oxygen atom and a niobium atom, as shown in Fig. S3.

The relative Gibbs free energies of Pt_1/Nb_2O_5 -Ov1 and Pt_1/Nb_2O_5 -Ov2 models (G_r) are computed by the following reaction equation, eq(S2):

 $Pt + Nb_2O_5 - ovx \rightarrow Pt_1/Nb_2O_5 - ovx \dots eq(S2)$

The relative Gibbs free energies of H_2 adsorption over Pt_1/Nb_2O_5 -Ovx are computed by the following equation, eq(S3):

$$G_{\rm r} = G_{\rm H_2-Pt_1/Nb_2O_5-Ovx} - G_{\rm H_2} - G_{\rm Pt_1/Nb_2O_5-Ovx} \dots eq(S3)$$

In eq(S2), the structures and energies of ground-state Pt metal atom, Nb₂O₅-Ovx and Pt₁/Nb₂O₅-Ovx are calculated, x = the type of O atoms in the outermost atomic layer of Nb₂O₅ (010), x is equal to 1 and 2. In eq(S3), G_r is the relative Gibbs free energy of H₂ adsorption on Pt₁/Nb₂O₅-Ov_x, G_{H2} . Pt₁/Nb₂O₅-Ov_x, G_{H2} and $G_{Pt_1/Nb_2O_5-Ov_x}$ are the Gibbs free energies of H₂-Pt₁/Nb₂O₅-Ov_x, H₂ and Pt₁/Nb₂O₅-Ov_x, respectively.

Fig. S1. Pt_1/Nb_2O_5 model; atoms shown in red, blue, and orange represent O, Nb, and Pt atoms, respectively. (a) Top view. (b) Side view. (c) $Pt_1/Nb_2O_5(010)$ surface QM/MM model. Spherical atoms are QM atoms, others are MM atoms. On $Nb_2O_5(010)$ surface, there is only one kind of catalytically active site, i.e., [–(NbO)5Nb], denoted as [Nb]. Then, the Pt-containing active site was constructed by placing a platinum atom on [Nb] active site, resulting in Pt-supported $Nb_2O_5(010)$ model (Pt_1/Nb_2O_5) including O180Nb72Pt1. On Pt_1/Nb_2O_5 , there is only a type of Pt-containing catalytically active site i.e., [–(NbO)PtNb(ONb)5–] ([OPtNb]). Hirshfeld charge of Pt atom is shown in orange. The Mayer bond orders of Pt–Nb (0.726), being symbolic of semi-single-bond, and Pt–O2 (0.972), being typical of single-bond.

Fig. S2. Nb₂O₅(010) model; atoms shown in red and blue represent O and Nb atoms, respectively, (a) Top view. (b) Side view. (c) and (d) two different O vacancies Nb₂O₅(010) models on Nb₂O₅(010) named Nb₂O₅-Ov1 and Nb₂O₅-Ov2, respectively. The dotted circles label the missing oxygens (vacancies).

Fig. S3. (a) Pt_1/Nb_2O_5 -Ov1 and (b) Pt_1/Nb_2O_5 -Ov2 are the two types of oxygen defective $Nb_2O_5(010)$ model supported platinum single-atom catalysts, respectively. Bond lengths are reported in Å. Hirshfeld charge of Pt atom is shown in orange. The relative Gibbs free energies (G_r , kJ mol⁻¹) shown in brackets.

Fig. S4. (a) H_2 -Pt₁/Nb₂O₅-Ov1 (1-v-IM1) and (b) H_2 -Pt₁/Nb₂O₅-Ov2 are the optimized geometric structures of H_2 adsorption over Pt₁/Nb₂O₅-Ov1 and Pt₁/Nb₂O₅-Ov2, respectively, Bond lengths are reported in Å. Hirshfeld charge of Pt atom is shown in orange. The relative Gibbs free energies (G_r , kJ mol⁻¹) to the dissociated reactant and catalyst are shown in brackets.

Fig. S5. The adsorption modes for HMF, DHMF, and 5-MFA over Nb-site of Pt_1/Nb_2O_5 -OV (upper row) and over Pt-site of Pt_1/Nb_2O_5 -OV (bottom row), respectively, Bond lengths are reported in Å. The relative Gibbs free energies (G_{rs} kJ mol⁻¹) are shown.

Fig. S6. The geometric structures and the relative Gibbs free energy (G_r , kJ mol⁻¹) relative to HMF-2 for eight conformers of HMF in THF solution at the G4 level. For clarity, hydrogen atoms on carbon are not shown. Bond lengths are reported in Å.

g. S7. The optimized geometric structures (a) and the schematic energy diagrams (b) with the Gibbs free energy $(G_r, kJ \text{ mol}^{-1})$ relative to the reactants for catalytical hydrogenolysis of HMF to 5-MF over [OPtNb]. Bond lengths are reported in Å.

Fig. S8. The optimized geometric structures (a) and the schematic energy diagrams (b) with the Gibbs free energy $(G_r, kJ \text{ mol}^{-1})$ relative to the reactants for catalytical hydrogenolysis of DHMF to 5-MFA over [OPtNb]. Bond lengths are reported in Å.

Fig. S9. The optimized geometric structures (a) and the schematic energy diagrams (b) with the Gibbs free energy $(G_{\rm r}, kJ \, {\rm mol}^{-1})$ relative to the reactants for catalytical hydrogenolysis of 5-MFA to DMF over [OPtNb]. Bond lengthsarereportedinÅ.

Fig. S10. The optimized geometric structures (a) and the schematic energy diagrams (b) with the Gibbs free energy $(G_{\rm r}, \text{kJ mol}^{-1})$ relative to the reactants for catalytical hydrogenation of HMF to DHMF over [OPtNb]. Bond lengths are reported in Å.

Fig. S11. The optimized geometric structures (a) and the schematic energy diagrams (b) with the Gibbs free energy $(G_{r}, kJ mol^{-1})$ relative to the reactants for catalytical hydrogenation of 5-MF to MFA over [OPtNb]. Bond lengths are reported in Å.

Fig. S12. The optimized geometric structures (a) and the schematic energy diagrams (b) with the Gibbs free energy $(G_{\rm r}, \text{kJ mol}^{-1})$ relative to the reactants for catalytical hydrogenolysis of HMF to 5-MF over [OPtNb-Ov]. Bond lengths are reported in Å.

Fig. S13. The optimized geometric structures (a) and the schematic energy diagrams (b) with the Gibbs free energy $(G_r, kJ mol^{-1})$ relative to the reactants for catalytical hydrogenolysis of DHMF to 5-MFA over [OPtNb-Ov]. Bond lengths are reported in Å.

Fig. S14. The optimized geometric structures (a) and the schematic energy diagrams (b) with the Gibbs free energy $(G_{\rm r}, \text{kJ mol}^{-1})$ relative to the reactants for catalytical hydrogenolysis of 5-MFA to DMF over [OPtNb-Ov]. Bond lengths are reported in Å.

Fig. S15. Arrhenius plots of rate constants for the crucial reaction step of 1-o-IM2 \rightarrow 1-o-TS1 in the reaction of HMF-to-5-MF hydrogenolysis catalyzed by Pt₁/Nb₂O₅ in THF solution.

Fig. S16. Arrhenius plots of rate constants for the crucial reaction step of 3-o-IM4 \rightarrow 3-o-TS1(before) in the reaction of HMF-to-DHMF hydrogenation catalyzed by Pt₁/Nb₂O₅ in THF solution.

Fig. S17. Arrhenius plots of rate constants for the crucial reaction step of 1-o-IM6 + H_2 + 5-MF \rightarrow 4-o-TS1 + H_2 O in the reaction of HMF-to-DMF hydrogenation catalyzed by Pt_1/Nb_2O_5 in THF solution.

$$k_{\text{v-OH-1}} = 1.72 \times 10^{11} \exp(-92252 / RT)$$

Fig. S18. Arrhenius plots of rate constants for the crucial reaction step of 1-v-IM4 \rightarrow 1-v-TS1 (before) in the reaction of HMF-to-5-MF hydrogenolysis catalyzed by Pt₁/Nb₂O₅-Ov in THF solution.

$$k_{\rm v-CHO-1} = 4.25 \times 10^{11} \exp(-141229 / RT)$$

Fig. S19. Arrhenius plots of rate constants for the crucial reaction step of 3-v-IM2 \rightarrow 3-v-TS1 in the reaction of HMF-to-DHMF hydrogenation catalyzed by Pt₁/Nb₂O₅-Ov in THF solution.

$$k_{\rm v-6/7} = 3.85 \times 10^{10} \exp(-175608 / RT)$$

Fig. S20. Arrhenius plots of rate constants for the crucial reaction step of 1-v-IM4 + $H_2 \rightarrow$ 4-v-TS1 + H_2O in the reaction of HMF-to-DMF hydrogenation catalyzed by Pt_1/Nb_2O_5-Ov in THF solution.

T/K	$k_{v-OH-1}/k_{v-CHO-1}$	$k_{v-OH-1}/k_{v-6/7}$	k _o - _{OH-1} /k _{o-CHO-1}	k_{v} -OH-1/ k_{o} -OH-1	$k_{v-CHO-1}/k_{o-CHO-1}$	^a S _{v-OH-1}
325	3.01×10 ⁷	1.12×10^{14}	5.69×10 ¹⁰	2.02×10 ⁷	3.81×10 ¹⁰	100.00%
350	8.26×10^{6}	1.23×10 ¹³	8.47×10 ⁹	5.32×10 ⁶	5.46×10 ⁹	100.00%
375	2.69×10^{6}	1.83×10^{12}	1.63×10 ⁹	1.68×10^{6}	1.01×10 ⁹	100.00%
400	1.01×10^{6}	3.43×10 ¹¹	3.83×10 ⁸	6.10×10 ⁵	2.32×10 ⁸	100.00%
425	4.24×10 ⁵	7.86×10^{10}	1.07×10^{8}	2.50×10 ⁵	6.33×10 ⁷	100.00%
450	1.96×10 ⁵	2.12×10^{10}	3.45×10 ⁷	1.13×10 ⁵	1.99×10 ⁷	100.00%
475	9.85×10 ⁴	6.56×10 ⁹	1.25×10^{7}	5.56×10 ⁴	7.08×10^{6}	100.00%
500	5.30×10 ⁴	2.28×10 ⁹	5.03×10^{6}	2.94×10 ⁴	2.79×10 ⁶	100.00%
525	3.02×10^{4}	8.79×10 ⁸	2.21×10 ⁶	1.65×10^{4}	1.20×10^{6}	100.00%

Table S1. Over the 325 ~ 525 K temperature range, the rate constant ratios of $k_{v-OH-1}/k_{v-CHO-1}$, $k_{v-OH-1}/k_{v-6/7}$, $k_{o-OH-1}/k_{o-CHO-1}$, $k_{v-OH-1}/k_{o-OH-1}/k_{o-OH-1}/k_{o-OH-1}$, as a function of temperature *T*.

Notes:

 S_{v-OH-1} represents the selectivity of the hydrogenolysis of HMF-to-5-MF, catalyzed by Pt₁/Nb₂O₅-Ov.

^a
$$S_{v-OH-1} = \frac{k_{v-OH-1}}{k_{v-OH-1} + k_{v-CHO-1}} \times 100\%$$

Species	ZPVE	E _{t,g}	G_0	<i>E</i> _{t,1}	Gc	$G_{\rm r,l}$
Pt_1 / Nb_2O_5	0.13282	-1428.02665	0.04171	-19700.54552	-19700.50381	
H ₂	0.01026	-1.16417	0.00885	-1.16444	-1.15559	
HMF	0.10966	-457.54293	0.09384	-457.55733	-457.46349	
H ₂ O	0.02089	-76.37869	0.02089	-76.38734	-76.36645	
DHMF	0.13286	-458.74163	0.11343	-458.75485	-458.64141	
5-MF	0.10505	-382.37249	0.09172	-382.38281	-382.29108	
MFA	0.12845	-383.56738	0.11075	-383.57626	-383.46551	
DMF	0.12311	-308.39298	0.11028	-308.39752	-308.28724	
[OPtNb]	0.25086	1886 74011	0 12125	20150 27013	20150 15787	0.0
+ H ₂ + HMF	0.23080	-1880.74011	0.12125	-20139.27913	-20139.13787	0.0
1-o-IM1	0.14717	-1429.27272	0.05569	-19701.78384	-19701.72815	
1-o-IM1 + HMF	0.25683	-1886.81566	0.14953	-20159.34117	-20159.19164	-88.7
1-o-IM2	0.25792	-1886.82083	0.14217	-20159.34797	-20159.20580	-125.8
1-o-TS1	0.25573	-1886.76801	0.14333	-20159.29182	-20159.14850	24.6
1-o-IM3	0.26029	-1886.84552	0.14872	-20159.35871	-20159.20999	-136.8
1-o-TS2	0.25507	-1886.80117	0.14271	-20159.32297	-20159.18026	-58.8
1-o-IM4	0.25703	-1886.81558	0.14435	-20159.35135	-20159.20700	-129.0
1-o-IM5	0.15297	-1504.45521	0.05969	-19776.95783	-19776.89814	
1-o-IM5 + 5-MF	0.25802	-1886.82771	0.15141	-20159.34063	-20159.18923	-82.3
`1-o-TS3	0.15073	-1504.43680	0.05772	-19776.94624	-19776.88852	
1-o-TS3 + 5-MF	0.25579	-1886.80929	0.14944	-20159.32905	-20159.17960	-57.1
1-o-IM6	0.15677	-1504.46024	0.06088	-19777.00763	-19776.94675	
1-o-IM6 + 5-MF	0.26182	-1886.83273	0.15260	-20159.39043	-20159.23784	-210.0

Table S2. Zero-point vibrational energies (*ZPVE*, hartree), sum of electronic energies in the gas phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt₁/N₂O₅.

mol⁻¹) of various species with respect to the reactants for the reaction of DHMF-to-5-MFA over Pt_1/N_2O_5 . Species ZPVE $E_{\rm t, g}$ G_0 $E_{t, l}$ G_{c} $G_{\rm r,\,l}$ -1429.27272 -19701.72815 1-o-IM1 0.14717 0.05569 -19701.783841-o-IM1 0.26977 -1886.85019 0.16027 -20159.37425 -20159.21398 -147.3 + DHMF - H₂ 2-o-IM1 0.28054 -1888.02013 0.17249 -20160.55374 -20160.38125 2-o-IM1 - H₂ 0.27028 -1886.85596 0.16364 -20159.38930 -20159.22566 -178.02-o-TS1 0.27846 -1887.96855 0.18280 -20160.50806 -20160.32526 2-o-TS1 - H₂ 0.26820 -1886.80438 0.17395 -20159.34362 -20159.16967 -31.0 2-o-IM2 0.28103 -1888.04840 0.17144 -20160.55252 -20160.38107 0.27076 2-o-IM2 - H₂ -1886.88423 0.16259 -20159.38808 -20159.22548 -177.5 2-o-TS2 0.27843 -1887.99467 0.16823 -20160.51674 -20160.34850

0.15938

0.16507

0.15622

0.05969

0.16159

0.05772

0.15962

0.06088

0.16278

-20159.35229

-20160.56424

-20159.39980

-19776.95783

-20159.36965

-19776.94624

-20159.35806

-19777.00763

-20159.41945

-20159.19291

-20160.39917

-20159.24358

-19776.89814

-20159.20806

-19776.88852

-20159.19844

-19776.94675

-20159.25667

-92.0

-225.0

-131.8

-106.5

-259.4

2-o-TS2 - H₂

2-o-IM3 - H₂

1-o-IM5 - H₂

1-o-TS3 - H₂

1-o-IM6 - H₂

2-o-IM3

1-o-IM5

+ 5-MFA 1-o-TS3

+ 5-MFA 1-o-IM6

+ 5-MFA

0.26817

0.28304

0.27278

0.15297

0.27116

0.15073

0.26892

0.15677

0.27496

-1886.83050

-1888.03733

-1886.87316

-1504.45521

-1886.85842

-1504.43680

-1886.84001

-1504.46024

-1886.86345

Table S3. Zero-point vibrational energies (*ZPVE*, hartree), sum of electronic energies in the gas phase (E_{t} , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, b}$) hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ

Table S4. Zero-point vibrational energies (*ZPVE*, hartree), sum of electronic energies in the gas phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol⁻¹) of various species with respect to the reactants for the reaction of 5-MFA-to-DMF over Pt₁/N₂O₅.

Species	ZPVE	$E_{ m t,g}$	G_0	$E_{ m t,l}$	G_{c}	$G_{ m r,l}$
1-o-IM1	0.14717	-1429.27272	0.05569	-19701.78384	-19701.72815	
1-o-IM1 + MFA	0 27509	1006 00046	0 16062	20150 41955	20150 24802	220.1
$- 2H_2 + H_2O$	0.27398	-1880.89040	0.10902	-20139.41833	-20139.24893	-239.1
5-o-IM1	0.27506	-1812.84456	0.16854	-20085.37937	-20085.21083	
5-0-IM1 - 2H ₂	0 27542	1886 80402	0 17172	20150 42782	20150 26610	2012
$+ H_2O$	0.27545	-1880.89492	0.1/1/5	-20139.43783	-20139.20010	-204.2
5-o-TS1	0.27305	-1812.79530	0.18065	-20085.33603	-20085.15539	
5-o-TS1 - 2H ₂	0 27342	-1886 84565	0 18383	-20159 39449	-20159 21066	-138.6
$+ H_2O$	0.2/342	-1000.0+505	0.16565	-20137.37+7	-20139.21000	-156.0
5-o-IM2	0.27653	-1812.87061	0.16778	-20085.39008	-20085.22229	
5-o-IM2 - 2H ₂	0 27690	-1886 92096	0 17097	-20159 44853	-20159 27756	-314.2
$+ H_2O$	0.27090	-1880.72070	0.17077	-20137+033	-20139.27730	-314.2
5-o-TS2	0.27359	-1812.81994	0.16228	-20085.34352	-20085.18124	
5-o-TS2 - 2H ₂	0 27396	-1886 87029	0 16547	-20159 /0197	-20159 23650	-206 5
$+ H_2O$	0.27590	-1000.07027	0.10047	-20139.40197	-20139.23030	-200.5
5-o-IM3	0.27829	-1812.86787	0.16474	-20085.39756	-20085.23282	
5-o-IM3 - 2H ₂	0 27866	-1886 91822	0 16793	-20159 45601	-20159 28808	-341 9
$+ H_2O$	0.27000	1000.91022	0.10795	20137.13001	20139.20000	511.9
1-o-IM5	0.15297	-1504.45521	0.05969	-19776.95783	-19776.89814	
1-o-IM5 - 2H ₂	0 27645	-1886 89854	0 17315	-20159 41381	-20159 24065	-2174
+ H ₂ O $+$ DMF	0.27013	1000.09051	0.17515	20137.11301	20139.21003	217.1
1-o-TS3	0.15073	-1504.43680	0.05772	-19776.94624	-19776.88852	
1-o-TS3 - 2H ₂	0 27421	-1886 88013	0 17119	-20159 40222	-20159 23103	-1921
+ H ₂ O $+$ DMF	0.27 121	1000.00015	0.17119	20139.10222	20137.23103	1)2.1
1-o-IM6	0.15677	-1504.46024	0.06088	-19777.00763	-19776.94675	
1-o-IM6 - 2H ₂	0.28025	-1886.90357	0.17434	-20159 46361	-20159 28926	-345.0
+ H ₂ O $+$ DMF	0.20025	1000.70557	0.1/TJT	20137.40301	20137.20720	545.0

Table S5. Zero-point vibrational energies (*ZPVE*, hartree), sum of electronic energies in the gas phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ/mol) of various species with respect to the reactants for the reaction of HMF-to-DHMF over Pt₁/N₂O₅.

Species	ZPVE	$E_{\mathrm{t,g}}$	G_0	$E_{\mathrm{t,l}}$	G_{c}	$G_{ m r,l}$
3-0-IM1	0.24283	-1885.60945	0.14391	-20158.16332	-20158.01940	
$3\text{-}o\text{-}IM1 + H_2$	0.25310	-1886.77362	0.15277	-20159.32776	-20159.17499	-44.9
3-0-IM2	0.25449	-1886.79198	0.12720	-20159.31429	-20159.18708	-76.7
3-o-TS1	0.25435	-1886.73793	0.14096	-20159.26397	-20159.12301	91.5
3-0-IM3	0.26276	-1886.81990	0.15027	-20159.35483	-20159.20456	-122.6
3-o-TS2	0.25964	-1886.78632	0.14759	-20159.32599	-20159.17840	-53.9
3-o-IM4	0.26570	-1886.81137	0.14999	-20159.37856	-20159.22857	-185.6

Table S6. Zero-point vibrational energies (*ZPVE*, hartree), sum of electronic energies in the gas phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol⁻¹) of various species with respect to the reactants for the reaction of 5-MF-to-5-MFA over Pt₁/N₂O₅.

Species	ZPVE	$E_{ m t,g}$	G_0	$E_{\mathrm{t,l}}$	$G_{ m c}$	$G_{\rm r,l}$
4-o-IM1	0.23838	-1810.44885	0.12315	-20082.97315	-20082.85000	
$4\text{-}o\text{-}IM1 + H_2O$	0.25927	-1886.82754	0.14404	-20159.36048	-20159.21644	-153.8
4-o-IM2	0.25004	-1811.62109	0.12772	-20084.14228	-20084.01456	
$4\text{-}o\text{-}IM2 + H_2O$	0 26067	1006 02561	0 12075	20150 26517	20150 22542	177.2
- H ₂	0.20007	-1880.85501	0.13975	-20139.30317	-20139.22342	-1//.5
4-o-TS1	0.24967	-1811.56505	0.14030	-20084.09138	-20083.95107	
$4\text{-}o\text{-}TS1 + H_2O$	0 26030	1886 77057	0 15234	20150 31427	20150 16103	10.7
- H ₂	0.20030	-1880.77937	0.15254	-20139.31427	-20139.10195	-10.7
4-o-IM3	0.25912	-1811.64596	0.14972	-20084.18186	-20084.03215	
$4\text{-}o\text{-}IM3 + H_2O$	0 26075	1886 86040	0 16175	20159 40476	20159 24201	223 5
- H ₂	0.20975	-1880.80049	0.10175	-20139.40470	-20139.24301	-223.3
4-o-TS2	0.25568	-1811.61347	0.14365	-20084.15139	-20084.00775	
$4\text{-}o\text{-}TS2 + H_2O$	0 26631	1886 82800	0 15568	20150 27420	20159 21861	150.5
- H ₂	0.20031	-1880.82800	0.15508	-20139.37429	-20139.21801	-139.3
4-o-IM4	0.26114	-1811.64516	0.14333	-20084.19275	-20084.04942	
$4\text{-}o\text{-}IM4 + H_2O$	0 27177	1886 85060	0 15537	20150 41565	20159 26028	268.0
- H ₂	0.2/1//	-1000.03909	0.13337	-20139.41505	-20139.20028	-200.9

Table S7. Zero-point vibrational energies (*ZPVE*, hartree), sum of electronic energies in the gas phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol⁻¹) of various species with respect to the reactants for the reaction of HMF-to-5-MF over Pt₁/N₂O₅-Ov.

Species	ZPVE	$E_{ m t, g}$	G_0	$E_{\mathrm{t,l}}$	G_{c}	$G_{\rm r,l}$
Pt_1/Nb_2O_5 -Ov	0.23998	-1810.96430	0.11932	-20084.18067	-20084.06135	0.0
1-v-IM1	0.13710	-1353.48996	0.04777	-19626.66946	-19626.62169	
1-v-IM1 + HMF	0.24677	-1811.03289	0.14161	-20084.22679	-20084.08517	-62.6
1-v-IM2	0.24991	-1811.04142	0.13783	-20084.23334	-20084.09551	-89.7
1-v-TS1	0.24696	-1810.98391	0.13594	-20084.19400	-20084.05806	8.6
1-v-IM3	0.24656	-1811.02943	0.13655	-20084.20813	-20084.07158	-26.9
1-v-TS2	0.24373	-1811.01351	0.13477	-20084.20316	-20084.06840	-18.5
1-v-IM4	0.24931	-1811.07206	0.13911	-20084.27606	-20084.13695	-198.5
1-v-IM5	0.22396	-1734.66715	0.11374	-20007.86176	-20007.74802	
$1-v-IM5 + H_2O$	0.24486	-1811.04584	0.13462	-20084.24910	-20084.11447	-139.5
1-v-TS3	0.22254	-1734.64661	0.11333	-20007.84750	-20007.73417	
$1\text{-}v\text{-}TS3 + H_2O$	0.24344	-1811.02530	0.13422	-20084.23484	-20084.10062	-103.1
1-v-IM6	0.22654	-1734.63159	0.09796	-20007.83556	-20007.73760	
$1-v-IM6 + H_2O$	0.24743	-1811.01028	0.11885	-20084.22290	-20084.10405	-112.1

Table S8. Zero-point vibrational energies (*ZPVE*, hartree), sum of electronic energies in the gas phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol⁻¹) of various species with respect to the reactants for the reaction of DHMF-to-5-MFA over Pt₁/N₂O₅-Ov.

Species	ZPVE	$E_{\rm t,g}$	G_0	$E_{\mathrm{t,l}}$	G_{c}	$G_{\rm r,l}$
1-v-IM1	0.13710	-1353.48996	0.04777	-19626.66946	-19626.62169	
1-v-IM1+	0.25070	1011 0(742	0 15225	20084 25086	20094 10751	121.2
DHMF - H ₂	0.25970	-1811.06/43	0.15235	-20084.25986	-20084.10751	-121.2
2-v-IM1	0.27221	-1812.24062	0.17053	-20085.43976	-20085.26922	
2-v-IM1 - H ₂	0.26194	-1811.07645	0.16168	-20084.27531	-20084.11363	-137.3
2-v-TS1	0.27035	-1812.20044	0.16310	-20085.39707	-20085.23397	
2-v-TS1 - H ₂	0.26009	-1811.03628	0.15424	-20084.23263	-20084.07838	-44.7
2-v-IM2	0.26970	-1812.22648	0.15542	-20085.41689	-20085.26148	
2-v-IM2 - H ₂	0.25943	-1811.06232	0.14656	-20084.25245	-20084.10589	-116.9
2-v-TS2	0.26633	-1812.20389	0.15303	-20085.40207	-20085.24904	
2-v-TS2 - H ₂	0.25607	-1811.03972	0.14418	-20084.23763	-20084.09345	-84.3
2-v-IM3	0.27136	-1812.26755	0.14664	-20085.45933	-20085.31269	
2-v-IM3 - H ₂	0.26110	-1811.10338	0.13779	-20084.29489	-20084.15710	-251.4
2-v-IM4	0.24657	-1735.85981	0.13609	-20009.06346	-20008.92737	
2-v-IM4 - H ₂	0.25720	1011 07422	0 14912	20084 28/25	20084 12822	201.9
$+ H_2O$	0.23720	-1811.0/455	0.14812	-20084.28033	-20084.13823	-201.8
2-v-TS3	0.24502	-1735.84192	0.14311	-20009.05560	-20008.91250	
2-v-TS3 - H ₂	0 25565	1011 05644	0 15514	20094 27950	20084 12225	162.0
$+ H_2O$	0.25565	-1811.03044	0.15514	-20084.27830	-20084.12555	-102.8
2-v-IM5	0.24894	-1735.82748	0.11840	-20009.03775	-20008.91934	
2-v-IM5 - H ₂	0 25057	1911 04200	0 12044	20084 26054	20084 12020	190.9
$+ H_2O$	0.23937	-1811.04200	0.13044	-20084.20034	-20084.13020	-160.8

Table S9. Zero-point vibrational energies (*ZPVE*, hartree), sum of electronic energies in the gas phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol⁻¹) of various species with respect to the reactants for the reaction of 5-MFA-to-DMF over Pt₁/N₂O₅-Ov.

Species	ZPVE	$E_{ m t, g}$	G_0	$E_{\mathrm{t,l}}$	G_{c}	$G_{ m r,l}$
1-v-IM1	0.13710	-1353.48996	0.04777	-19626.66946	-19626.62169	
1-v-IM1 + MFA	0 26502	1911 10760	0 16171	20084 20417	20084 14246	212.0
$- 2H_2 + H_2O$	0.20392	-1811.10709	0.101/1	-20084.30417	-20084.14240	-215.0
5-v-IM1	0.26786	-1737.06550	0.16308	-20010.26165	-20010.09857	
5-v-IM1 - 2H ₂	0 26822	1011 11505	0 16627	20084 22010	20094 15292	2128
$+ H_2O$	0.20822	-1811.11385	0.10027	-20084.32010	-20084.13383	-242.0
5-v-TS1	0.26352	-1737.00802	0.14025	-20010.20472	-20010.06447	
5-v-TS1 - 2H ₂	0 26280	1911 05929	0 1/2/2	20084 26217	20084 11074	152.2
$+ H_2O$	0.20389	-1811.05858	0.14343	-20084.20317	-20084.11974	-133.3
5-v-IM2	0.26504	-1737.06214	0.15689	-20010.24015	-20010.08326	
5-v-IM2 - 2H ₂	0.26540	1811 11240	0 16008	20084 20860	20084 12852	202.6
$+ H_2O$	0.20340	-1011.11249	0.10008	-20084.29800	-20084.13833	-202.0
5-v-TS2	0.26211	-1737.03566	0.16227	-20010.23449	-20010.07223	
5-v-TS2 - 2H ₂	0 26247	1911 09602	0 16545	20084 20205	20084 12750	172 7
$+ H_2O$	0.20247	-1811.08002	0.10545	-20084.29293	-20084.12730	-1/3./
5-v-IM3	0.26708	-1737.09194	0.15746	-20010.29991	-20010.14245	
5-v-IM3 - 2H ₂	0 26744	1811 14230	0 16064	20084 35836	2008/ 10772	358.0
$+ H_2O$	0.20744	-1811.14230	0.10004	-20084.55850	-20084.19772	-338.0
5-v-IM4	0.24109	-1660.68036	0.13346	-19933.87855	-19933.74510	
5-v-IM4 - 2H ₂	0 26234	1811 10040	0 15753	20084 32434	2008/ 16682	276.0
$+ 2H_2O$	0.20234	-1811.10940	0.13733	-20084.52454	-20084.10082	-270.9
5-v-TS3	0.24061	-1660.66094	0.13840	-19933.87314	-19933.73474	
5-v-TS3 - 2H ₂	0.26186	1911 09009	0 16247	20084 21802	20084 15646	240.7
$+ 2H_2O$	0.20180	-1811.08998	0.10247	-20084.51895	-20084.15040	-249.7
5-v-IM5	0.24441	-1660.65716	0.12977	-19933.86685	-19933.73708	
5-v-IM5 - 2H ₂	0 26566	-1811 08620	0 15384	-2008/ 3126/	-2008/ 15880	-255.9
$+ 2H_2O$	0.20500	-1011.00020	0.15504	-20004.31204	-20004.13080	-233.7

mol ⁻¹) of various species with respect to the reactants for the reaction of HMF-to-DHMF over Pt ₁ /N ₂ O ₅ -Ov.								
Species	ZPVE	$E_{\rm t, \ g}$	G_0	$E_{\mathrm{t,l}}$	G_{c}	$G_{\rm r,l}$		
3-v-IM1	0.23209	-1809.84329	0.11863	-20083.04042	-20082.92179			
$3\text{-v-IM1} + H_2$	0.24235	-1811.00745	0.12748	-20084.20486	-20084.07738	-42.1		
3-v-IM2	0.24584	-1811.01400	0.13276	-20084.21468	-20084.08192	-54.0		
3-v-TS1	0.24155	-1810.95068	0.13302	-20084.15652	-20084.02349	99.4		
3-v-IM3	0.25112	-1811.02937	0.13891	-20084.22636	-20084.08745	-68.5		
3-v-TS2	0.25107	-1811.00885	0.14334	-20084.20369	-20084.06035	2.6		
3-v-IM4	0.25580	-1811.03453	0.14606	-20084.24276	-20084.09671	-92.8		

Table S10. Zero-point vibrational energies (*ZPVE*, hartree), sum of electronic energies in the gas phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol⁻¹) of various species with respect to the reactants for the reaction of HMF-to-DHMF over Pt₁/N₂O₅-Ov.

Table S11. Zero-point vibrational energies (*ZPVE*, hartree), sum of electronic energies in the gas phase (E_t , g, hartree), thermal correction to Gibbs free energies (G_0 , hartree), sum of electronic energies in in aqueous solution ($E_{t, l}$, hartree), sum of electronic and thermal Gibbs free energies (G_c , hartree) and relative Gibbs free energies ($G_{r, l}$, kJ mol⁻¹) of various species with respect to the reactants for the reaction of 5-MF-to-5-MFA over Pt₁/N₂O₅-Ov.

Species	ZPVE	$E_{ m t,g}$	G_0	$E_{ m t,l}$	G_{c}	$G_{\rm r,l}$
4-v-IM1	0.22749	-1734.66938	0.11909	-20007.86522	-20007.74613	
$4\text{-v-IM1} + H_2O$	0.24838	-1811.04807	0.13998	-20084.25256	-20084.11258	-134.5
4-v-IM2	0.24019	-1735.84043	0.13165	-20009.03840	-20008.90675	
$4\text{-v-IM2} + H_2O$	0.25082	-1811.05495	0.14369	-20084.26129	-20084.11760	-147.7
- H ₂						
4-v-TS1	0.23934	-1735.78709	0.13210	-20008.98376	-20008.85165	
$4\text{-}v\text{-}TS1 + H_2O$	0.24007	1911 00162	0 14414	20084 20665	20084 06251	2 1
- H ₂	0.24997	-1811.00102	0.14414	-20084.20003	-20084.00231	-3.1
4-v-IM3	0.24716	-1735.85665	0.13974	-20009.04529	-20008.90555	
$4\text{-v-IM3} + H_2O$	0.25779	-1811.07117	0.15178	-20084.26818	-20084.11640	-144.5
- H ₂						
4-v-TS2	0.24501	-1735.83663	0.13836	-20009.02952	-20008.89116	
$4\text{-}v\text{-}TS2 + H_2O$	0.25564	1911 05115	0 15020	20084 25241	20084 10202	106.8
- H ₂	0.23304	-1811.03113	0.13039	-20084.23241	-20084.10202	-100.8
4-v-IM4	0.25075	-1735.86105	0.14596	-20009.07080	-20008.92483	
$4\text{-v-IM4} + H_2O$	0 26139	1811 07557	0.15800	20084 20360	20084 13560	105.2
- H ₂	0.20138	-1011.0/33/	0.13800	-20004.29309	-20004.15509	-195.2