Ag co-catalyst prepared by ultrasonic reduction method

for efficient photocatalytic conversion of CO2 with H2O

using ZnTa₂O₆ photocatalyst

Kio KAWATA^{a,b}, Shoji IGUCHI^{a,*}, Shimpei NANIWA^a, Tsunehiro TANAKA^{a,c},

Masamu NISHIMOTOb, Kentaro TERAMURAa,c,*

^a Department of Molecular Engineering, Graduate School of Engineering, Kyoto

University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

^b Ichikawa Research Center, Sumitomo Metal Mining Co., Ltd., 3-18-5, Nakakokubun,

Ichikawa, Chiba 272-8588, Japan

^c Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishibiraki-cho

34-4, Sakyo-ku, Kyoto 606-8103, Japan

*Corresponding Authors

Shoji IGUCHI: iguchi.shoji.4k@kyoto-u.ac.jp

Kentaro TERAMURA: teramura.kentaro.7r@kyoto-u.ac.jp

Figure S1 XRD patterns of (a) $ZnTa_2O_6$ and (b) reference patterns of $ZnTa_2O_6$ (ICSD #36289).

Figure S2 Ultraviolet-visible (UV-vis) diffuse reflectance spectrum of ZnTa₂O₆.

Table S1 The amount of loaded Ag co-catalyst on ZnTa₂O₆ (Ag/ZnTa₂O₆) fabricated by the four different modification methods (i.e. USR, CR, IMP, and PD). The total amount of loaded Ag species was determined by analyzing solution after dissolving Ag/ZnTa₂O₆ in concentrated nitric acid via inductively coupled plasma optical emission spectrometry (ICP–OES, iCAP 7400 ICP-OES DUO, Thermo Fischer Scientific Inc.).

Modification method	Calcultated amount	Experimental amount
	(wt.%)	(wt.%)
Ultrasonic reduction		
(USR)	0.5	0.49
Chemical reduction		
(CR)	0.5	0.47
Impregnation	0.5	0.50
(IMP)	0.5	0.50
Photodeposition	0.5	0.46
(PD)	0.3	0.40

Table S2 The amount of loaded Ag co-catalyst on ZnTa₂O₆ (Ag/ZnTa₂O₆) fabricated by the USR method. The total amount of loaded Ag species was determined by analyzing solution after dissolving Ag/ZnTa₂O₆ in concentrated nitric acid via inductively coupled plasma optical emission spectrometry (ICP–OES, iCAP 7400 ICP-OES DUO, Thermo Fischer Scientific Inc.).

Calculated amount (wt.%)	Experimental amount (wt.%)
0.1	0.10
0.5	0.49
1.0	0.96
2.0	2.1
3.0	3.2
5.0	5.1

Figure S3 XANES spectra of Ag loaded photocatalysts with references. (a) $Ag/Ta_2O_5_USR, (b) \ Ag/Ta_2O_5_IMP, (c) \ Ag/Ga_2O_3_USR, and (d) \ Ag/Ga_2O_3_IMP.$

Figure S4 Time courses of formation rates of CO over Ag/ZnTa₂O₆ catalysts prepared by (a) an ultrasonic reduction (USR), (b) a chemical reduction (CR), (c) an impregnation (IMP), and (d) a photodeposition (PD) methods.

Figure S5 Time courses of formation rates of H_2 (blue), O_2 (green), and CO (red), and selectivity toward CO evolution in the photocatalytic conversion of CO_2 by H_2O over $Ag/ZnTa_2O_6$ fabricated by the USR method.

Figure S6 TEM images of $Ag/ZnTa_2O_6$ modified by the USR method; (a) before and (b) after photocatalytic reaction.

Figure S7 UV-vis diffuse reflectance spectra of Ag/ZnTa₂O₆ modified by the USR method (a) before and (b) after photocatalytic reaction.

Figure S8 UV-vis diffuse reflectance spectra of Ag/ZnTa₂O₆ with various loading amounts of Ag fabricated by the USR method.

Figure S9 TEM images of $Ag/ZnTa_2O_6$ with various loading amounts of Ag fabricated by the USR method; (a) 0.1, (b) 0.5, (c) 1.0, (d) 2.0, (e) 3.0, and (f) 5.0 wt.%.

Figure S10 The size distribution of Ag particles on the surface of ZnTa₂O₆ with various loading amounts of Ag fabricated by the USR method; (a) 0.1, (b) 0.25, (c) 0.5, (d) 1.0, (e) 1.5, (f) 2.0, (g) 3.0, and (h) 5.0 wt.%.