Supporting Information to:

Multiscale modelling of CO₂ Hydrogenation of TiO₂supported Ni₈ Clusters: on the Influence of Anatase and Rutile Polymorphs

Lulu Chen, Ying-Ying Ye, Rozemarijn D.E. Krösschell, Emiel J. M. Hensen, Ivo A. W. Filot *

Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands

*Corresponding author.

Email:

i.a.w.filot@tue.nl (I.A.W. Filot)

Figure S1. Surface models of TiO₂-a(101) and TiO₂-r(110). (a): the top view of TiO₂-a(101); (b): the top view of TiO₂-r(110); (c): the side view of TiO₂-a(101); (d): the side view of TiO₂-r(110). Color scheme: light gray: Ti; red: O. To enhance the visualization of the Ti atoms, the O atoms are displayed at a smaller size.

Figure S2. Ten most stable structures of Ni₈/TiO₂-a. The energy of each structure relative to the most stable structure is shown as ΔE_{rel} (measured in electron volts, eV). The similarity is indicated as the Hilbert-Schmidt norm ($|D|_{HS}$).

Figure S3. Comparisons of ten most similar structures of Ni₈/TiO₂-a with respect to the most stable structure. The similarity is indicated as the Hilbert-Schmidt norm ($|D|_{HS}$). The energy of each structure relative to the most stable structure is shown as ΔE_{rel} (measured in electron volts, eV).

Figure S4. Ten most stable structures of Ni₈/TiO₂-r. The energy of each structure relative to the most stable structure is shown as ΔE_{rel} (measured in electron volts, eV). The similarity is indicated as the Hilbert-Schmidt norm ($|D|_{HS}$).

Figure S5. Comparisons of ten most similar structures of Ni₈/TiO₂-a with respect to the most stable structure. The similarity is indicated as the Hilbert-Schmidt norm ($|D|_{HS}$). The energy of each structure relative to the most stable structure is shown as ΔE_{rel} (measured in electron volts, eV).

Figure S6. The configurations of 3D-Ni₈ clusters and falt Ni₈ clusters deposited on TiO₂ anatase (a and b) and rutile (c and d).

Figure S7. The energy diagrams of H spillover on $\rm Ni_8/TiO_2\text{-}a$ (a) and $\rm Ni_8/TiO_2\text{-}r$ (b).

Figure S8. Configurations of CO₂ methanation on Ni₈/TiO₂-a via CH_x intermediates. Color scheme: Light gray: Ti; Red: O in support; Green: Ni; Dark gray: C; Pink: O in CO₂; White: H.

Figure S9. Configurations of CO₂ methanation on Ni₈/TiO₂-a via HCO*, COH* and HCOH* intermediates. Color scheme: Light gray: Ti; Red: O in support; Green: Ni; Dark gray: C; Pink: O in CO₂; White: H.

Figure S10. Configurations of CO₂ methanation on Ni₈/TiO₂-a via H₂CO*, H₃CO*, H₂COH* and H₃COH* intermediates. Color scheme: Light gray: Ti; Red: O in support; Green: Ni; Dark gray: C; Pink: O in CO₂; White: H.

Figure S11. Configurations of H-assisted CO₂ dissociation mechanisms on Ni₈/TiO₂-a via H_xCOO* intermediates. Color scheme: Light gray: Ti; Red: O in support; Green: Ni; Dark gray: C; Pink: O in CO₂; White: H.

Figure S12. Configurations of CO₂ methanation on Ni₈/TiO₂-r via CH_x intermediates. Color scheme: Light gray: Ti; Red: O in support; Green: Ni; Dark gray: C; Pink: O in CO₂; White: H.

Figure S13. Configurations of H-assisted CO dissociation mechanisms on Ni₈/TiO₂-r via HCO* and HCOH* species. Color scheme: Light gray: Ti; Red: O in support; Green: Ni; Dark gray: C; Pink: O in CO₂; White: H.

Figure S14. Configurations of H-assisted CO dissociation mechanisms on Ni₈/TiO₂-r via H₂CO*, H₂COH*, H₃CO* and H₃COH* species. Color scheme: Light gray: Ti; Red: O in support; Green: Ni; Dark gray: C; Pink: O in CO₂; White: H.

Figure S15. Configurations of H-assisted CO₂ dissociation mechanisms on Ni₈/TiO₂-r via H_xCOO* intermediates. Color scheme: Light gray: Ti; Red: O in support; Green: Ni; Dark gray: C; Pink: O in CO₂; White: H.

Figure S16. Reaction energy diagram of CO_2 activation on (a) Ni₈/TiO₂-a and (b) Ni₈/TiO₂-r. Direct CO₂ dissociation, COOH formation and HCOO formation are shown with brown, blue and orange lines, respectively. The corresponding configurations of transition states and final states are displayed below the energy diagram. TS1 and FS1 correspond to the transition state and final state of CO₂ direct dissociation. TS2 and FS2 represent the transition state and final state of COOH formation. TS3 and FS3 denote the transition state and final state of HCOO formation.

Section S1: Pathway Involving H_xCO₂ Intermediates for Ni₈/TiO₂-anatase

The final part of the kinetic network, corresponding to the blue and orange section in Figure 5, branches out from the direct CO₂ dissociation pathway (between R2 and R3) and pertains to the elementary reaction steps involving H_xCO₂ intermediates. The activation and reaction energy for COOH* formation from CO₂ (R50) is $\Delta E_{act} = 1.98$ eV and $\Delta E_R = 1.12$ eV, respectively. COOH* decomposes into CO* and OH* (R51) which is the same as CO*OH*H* in the CH_x intermediates pathway. The dissociation of COOH* needs to overcome an activation energy of 0.69 eV and this step is exothermic by 1.66 eV. The pathway from CO₂*2H* to CO*OH*H* through the direct CO₂ dissociation has an activation energy of 1.11 eV, whereas the COOH* pathway exhibits a higher activation energy of 1.98 eV.

To obtain HCOO*, H* first migrates from H₁₋₆₋₇ to H₁₋₂₋₇ site ($\Delta E_R = 0.39 \text{ eV}$) such that H gets close to the C atom in adsorbed CO₂. Next, HCOO* formation is exothermic by 0.41 eV overcoming an activation energy of 0.85 eV. Including the energy for H migration, the overall activation and reaction energies for HCOO* formation (R52) is $\Delta E_{act} = 1.24 \text{ eV}$ and $\Delta E_R = -0.02 \text{ eV}$, respectively.

HCOO*H* can either dissociate in HCO*O*H* (R53, $\Delta E_{act} = 2.80 \text{ eV}$, $\Delta E_R = -0.15 \text{ eV}$), or become hydrogenated to form HCOOH* (R58, $\Delta E_{act} = 2.08 \text{ eV}$, $\Delta E_R = 1.87 \text{ eV}$) or H₂COO* (R60, $\Delta E_{act} = 2.74 \text{ eV}$, $\Delta E_R = 1.47 \text{ eV}$). The dissociated O* in HCO*O*H*reacts with H* forming an OH* (R54) with an activation energy of 1.77 eV and a reaction energy of 0.82 eV. The OH* species can also be obtained through the dissociation of HCOOH* (R59, $\Delta E_{act} = 1.43 \text{ eV}$, $\Delta E_R = -1.21 \text{ eV}$). The OH* is then hydrogenated to H₂O* in the presence of H*, which is provided by the adsorption of H₂ (R55, $\Delta E_{ads} = -$ 1.16 eV). The subsequent formation of H₂O* (R56) is endothermic by 0.73 overcoming an activation energy of 0.86 eV. The desorption of H₂O (R57) generates the same configuration of HCO*H* in the H-assisted CO dissociation mechanism with a desorption energy of 0.33 eV.

The dissociation of H₂COO* results in the formation of H₂CO* and O* (R61) with an activation energy of 1.48 eV and an exothermic reaction energy of 1.09 eV. The adsorption of H₂ on this surface is exothermic by -0.93 eV (R62). The O* subsequently reacts with these two H* forming OH* (R63, ΔE_{act} = 2.02 eV, ΔE_R = 0.30 eV) and H₂O* (R64, ΔE_{act} = 1.80 eV, ΔE_R = 1.32 eV). Finally, H₂O desorbs leaving only H₂CO* on the cluster (R65, ΔE_{des} = 0.11 eV), which is the same as the H₂CO* species in the H-assisted CO dissociation pathway.

Section S2: Pathway Involving H_xCO₂ Intermediates for Ni₈/TiO₂-rutile

The last section involves H-assisted CO_2 dissociation via H_xCO_2 intermediates as depicted by the blue and orange section in Figure 6. Hydrogenation of CO₂ leads to formation of COOH* (R50, $\Delta E_{act} = 2.19$ eV, $\Delta E_{\rm R} = 1.04$ eV) or HCOO* (R52, $\Delta E_{\rm act} = 1.46$ eV, $\Delta E_{\rm R} = -0.20$ eV). COOH* can dissociate to yield CO* and OH* (R51, $\Delta E_{act} = 0.60$ eV, $\Delta E_R = -1.04$ eV), which are located at B₇₋₈ and H₁₋₄₋₇ sites, respectively. This configuration closely resembles the CO*OH*H* intermediate in the CH_xintermediates pathway, with a negligible energy difference of -0.08 eV. Dissociation of HCOO* generates HCO* and O* (R53, $\Delta E_{act} = 2.49 \text{ eV}$, $\Delta E_R = -0.12 \text{ eV}$), resulting in the presence of HCO*, O* and H* on the surface. The H* migrates from H₁₋₄₋₇ to H₂₋₇₋₈ ($\Delta E_R = 0.47$ eV), followed by a reaction between O* and H* to generate OH* (R54, $\Delta E_{act} = 1.17 \text{ eV}$, $\Delta E_R = 0.12 \text{ eV}$). This configuration can alternatively be obtained through the formation (R58, $\Delta E_{act} = 2.14 \text{ eV}$, $\Delta E_R = 1.82 \text{ eV}$) and dissociation of HCOOH* (R59, $\Delta E_{act} = 0.26 \text{ eV}$, $\Delta E_R = -1.35 \text{ eV}$). After adsorption of H₂ (R55, $\Delta E_{ads} = -1.25 \text{ eV}$), OH* can be hydrogenated to form H₂O* (R56, $\Delta E_{act} = 1.29 \text{ eV}$, $\Delta E_R = 0.57 \text{ eV}$) which can desorb with an associated desorption energy of 0.72 eV, leaving HCO*H* on the surface and linking back to the red segment of the kinetic network. Finally, the hydrogenation of HCOO* to H_2COO^* (R60) requires an activation energy of 4.39 eV including the migration of H*. We consider this barrier to be prohibitively large and therefore did not consider the subsequent H₂COO* dissociation and O* hydrogenation.

No.	Elementary reaction Ni_8/TiO_2 anatase (101)		Ni_8/TiO_2 rutile (110)		
	,, _,, _	$\Delta E_{act, forward}$	$\Delta E_{act, backward}$	$\Delta E_{act, forward}$	$\Delta E_{ m act,\ backward}$
D 1		$\xrightarrow{\rightarrow} CO^* \rightarrow C^* \rightarrow$	• CH4	0	1.27
<u>KI</u>	$H_2 + * \leftrightarrow 2H^{**}$	0	1.23	0	1.3/
R2 D3	$CO_2 + 2H^* \leftrightarrow CO_2^* 2H^*$	0 00	1.10	0 00	1.2/
R4	$CO^*O^*2H^* \leftrightarrow CO^*OH^*H^*$	1 40	1.00	1.03	0.98
R5	$CO^*OH^*H^* \leftrightarrow CO^*H_2O^*$	1.39	0.31	1.79	1.04
R6	$H_2O + CO^* \leftrightarrow CO^*H_2O^*$	0	0.94	0	0.74
R7	$CO + * \leftrightarrow CO^*$	0	1.93	0	2.13
R8	$CO^* + H_2 \leftrightarrow CO^*2H^*$	0	1.46	0	1.78
R9	$CO*2H* \leftrightarrow C*O*2H*$	1.99	2.23	1.41	1.08
R10	$C*O*2H* \leftrightarrow C*OH*H*$	1.52	0.92	2.02	1.92
<u>R11</u>	$C^*OH^*H^* \leftrightarrow C^*H_2O^*$	1.46	0.43	1.42	0.53
R12	$H_2O + C^* \leftrightarrow C^*H_2O^*$	0	0.74	0	0.87
<u>RI3</u>	$H_2 + C^* \leftrightarrow C^* 2H^*$	0	1.60	0	1.95
R14 D15	$C^*H_2^* \leftrightarrow CH^*H^*$	0.88	0.49	1.56	0.85
	$\frac{C\Pi^{*}\Pi^{*}\leftrightarrow C\Pi_{2}}{\Pi_{2}*+C\Pi_{2}*\leftrightarrow C\Pi_{2}*2\Pi*}$	0.97	1.86	0.85	1.84
R17	$\frac{112}{CH_2*2H^*} \leftrightarrow CH_2*H^*$	1 31	1.00	1 34	0.88
R18	$CH_2 * H^* \leftrightarrow CH_4 *$	1.51	0.67	1.34	0.84
R19	$CH_4(G) + * \leftrightarrow CH_4*$	0	0.14	0	0.15
	C0* -	$\rightarrow COH^* \rightarrow H^*C$)H*C		
R20	$CO*2H* \leftrightarrow COH*H*$	2.27	0.89	3.18	1.00
R21	$COH^*H^* \leftrightarrow C^*OH^*H^*$	1.10	2.15	-	-
	CO	$* \rightarrow \text{HCO}^* \rightarrow \text{C}$	H*		
R22	$CO*2H* \leftrightarrow HCO*H*$	1.16	0.43	1.52	0.35
R23	$\text{HCO*H*} \leftrightarrow \text{HC*O*H*}$	0.9	1.71	1.66	2.26
R24	$HC*O*H* \leftrightarrow HC*OH*$	1.84	1.17	1.56	1.01
R25	$H_2 + HC^*OH^* \leftrightarrow HC^*OH^*2H^*$	0	1.28	0	1.41
R26	$HC^*OH^*2H^* \leftrightarrow HC^*H^*H_2O^*$	1.05	0.24	1.81	0.90
R27	$H_2O + CH^*H^* \leftrightarrow HC^*H^*H_2O^*$		0.77	0	0.32
D 20		$COH^* \rightarrow HC^*OH$	1* 0.(1		
R28	$\frac{\text{COH}^*\text{H}^* \leftrightarrow \text{HCOH}^*}{\text{UCO}^*\text{UCO}}$	1.25	0.61		
R29 R30	$HCOH* \hookrightarrow HC*OH*$	2.28	2 38	0.19	1.70
K30		0.25 >* → H2CO* →H	2.36	0.17	1.70
R31		$7 \rightarrow \Pi_2 C O \rightarrow \Pi_1$	0.95	1.25	0.64
R32	$H_2CO^* \leftrightarrow H_2C^*O^*$	2 19	2 78	2 30	1 41
R33	$H_2 + H_2C^*O^* \leftrightarrow H_2C^*O^*2H^*$	0	1.32	0	1.10
R34	$H_2C^*O^*2H^* \leftrightarrow H_2C^*OH^*H^*$	1.10	1.06	1.30	0.89
R35	$H_2C^*OH^*H^* \leftrightarrow H_2C^*H_2O^*$	1.99	0.57	2.17	1.00
R36	$H_2O + CH_2^* \leftrightarrow H_2C^*H_2O^*$	0	0.70	0	0.33
	ŀ	$H_2COH^* \rightarrow H_2C^*$			
R37	$H_2 + H_2CO^* \leftrightarrow H_2CO^*2H^*$	0	1.23	0	1.56
R38	$H_2CO^*2H^* \leftrightarrow H_2COH^*H$	1.58	0.76	1.52	0.26
R39	$H_2COH^*H \leftrightarrow H_2C^*OH^*H^*$	0.52	1.98	0.46	1.75
	H ₂ CC	$0^* \rightarrow H_3CO^* \rightarrow I$	H ₃ C*		
R40	$H_2CO^*2H^* \leftrightarrow H_3CO^*H^*$	0.91	0.38	0.92	0.39
<u>K41</u>	$H_3CO^*H^* \leftrightarrow H_3C^*O^*H^*$	0.75	1.00	0.88	2.06
<u>K42</u>	$H_3 \cup^* \cup^* H^* \leftrightarrow H_3 \cup^* \cup H^*$	0.34	0.89	1./1	1.19
R43	$H_2 + H_3 C^* \cup H^* \leftrightarrow H_3 C^* \cup H^* 2H^*$	1 66	1.34	1 21	1.1/
R45	$H_{2}O + CH_{3}*H^{*} \leftrightarrow H_{2}C*H_{2}O*H^{*}$	n 1.00	1.20	0	0 19
1173			1.05	v	0.17
R46	$H_{2}COH*H \leftrightarrow H_{2}COH*$	0.93	0.35	0.97	0.53
R47	H ₃ CO*H* ↔ H ₃ COH*	1.80	0.93	2.23	1.06
R48	H ₃ COH [*] ↔ H ₃ C [*] OH [*]	0.55	2.25	0.83	2.66
R49	$H_3COH(G) + * \leftrightarrow H_3COH^*$	0	0.53	0	0.68

Table S1. Activation energies of CO_2 methanation on Ni₈/TiO₂-a and Ni₈/TiO₂-r. The reaction numbers are the same as in Figure 4 and Figure 7. The values are given in eV.

$CO_2*2H^* \rightarrow COOH^* \rightarrow CO*OH^*H$								
R50	$CO_2*2H^* \leftrightarrow COOH^*H^*$	1.98	1.10	2.19	1.15			
R51	$\rm COOH^*H^*\leftrightarrow \rm CO^*OH^*H^*$	0.69	2.35	0.60	1.72			
	$\rm CO_2*2H^* \rightarrow \rm HCOO^* \rightarrow \rm HCO^*$							
R52	$CO_2*2H^* \leftrightarrow HCOO^*H^*$	1.24	1.26	1.46	1.26			
R53	HCOO*H* ↔ HCO*O*H*	2.80	2.95	2.49	2.61			
R54	HCO*O*H* ↔ HCO*OH*	1.77	0.95	1.64	1.06			
R55	$H_2 + HCO*OH* \leftrightarrow HCO*OH*2H*$	0	1.16	0	1.25			
R56	$HCO*OH*2H* \leftrightarrow HCO*H_2O*H*$	0.86	0.13	1.29	0.72			
R57	$H_2O + HCO^*H^* \leftrightarrow HCO^*H_2O^*H^*$	0	0.33	0	0.72			
$\rm HCOOH^* \rightarrow \rm HCO^*OH^*$								
R58	$HCOO^*H^* \leftrightarrow HCOOH^*$	2.08	0.21	2.14	0.32			
R59	$HCOOH^* \leftrightarrow HCO^*OH^*$	1.43	2.64	0.26	1.61			
	HCOO* –	\rightarrow H ₂ COO* \rightarrow	H2CO*					
R60	$HCOO^*H^* \leftrightarrow H_2COO^*$	2.74	1.27	-	-			
R61	$H_2COO^* \leftrightarrow H_2CO^*O^*$	1.48	2.57	-	-			
R62	$H_2 + H_2CO^*O^* \leftrightarrow H_2CO^*O^*2H^*$	0	0.93	-	-			
R63	$H_2CO^*O^*2H^* \leftrightarrow H_2CO^*OH^*H^*$	2.02	1.72	-	-			
R64	$H_2CO^*OH^*H^* \leftrightarrow H_2CO^*H_2O^*$	1.80	0.48	-	-			
R65	$H_2O^* + H_2CO^* \leftrightarrow H_2CO^*H_2O^*$	0	0.11	-	-			
	Additional CO desorption							
R66	$CO + 2H^* \leftrightarrow CO^*2H^*$	0	2.17	0	2.54			

	Ni ₈ /TiO ₂ -a				Ni ₈ /TiO ₂ -r		
No.	Elementary reaction	Aforward	Abackward	$A_{\rm forward}$	Abackward		
	CO ₂ *	$\rightarrow CO^* \rightarrow C^* -$	→ CH4				
R1	$H_2 + * \leftrightarrow 2H^{**}$	1.92×10^{08}	1.30×10 ¹⁴	1.92×10^{08}	1.30×10^{14}		
R2	$CO_2 + 2H^* \leftrightarrow CO_2^*2H^*$	4.11×10^{07}	1.38×10^{16}	4.11×10^{07}	1.38×10^{16}		
R3	$CO_2*2H* \leftrightarrow CO*O*2H*$	3.25×10 ¹¹	6.09×10 ¹¹	5.18×10 ¹³	2.35×10 ¹⁴		
R4	$CO*O*2H* \leftrightarrow CO*OH*H*$	1.38×10^{12}	2.89×10 ¹²	2.03×10^{13}	3.30×10 ¹¹		
<u>R5</u>	$CO^*OH^*H^* \leftrightarrow CO^*H_2O^*$	1.51×10^{12}	3.78×10 ¹¹	6.21×10 ¹¹	2.35×10^{10}		
<u>R6</u>	$H_2O + CO^* \leftrightarrow CO^*H_2O^*$	6.42×10 ⁰⁷	4.06×10^{14}	6.42×10 ⁰⁷	4.06×10^{14}		
<u>R/</u>	$\frac{CO + * \leftrightarrow CO^*}{CO^* + U}$	2.06×10^{07}	3.34×10^{17}	5.15×10 ⁰⁷	2.22×10^{17}		
<u></u>	$\frac{\text{CO}^* + \text{H}_2 \leftrightarrow \text{CO}^* 2\text{H}^*}{\text{CO}^* 2\text{H}^*}$	1.92×10^{10}	2.51×10^{14}	1.92×10^{10}	$\frac{3.8\times10^{14}}{1.01\times10^{13}}$		
R9 D10	$\frac{CO^*2H^* \leftrightarrow C^*O^*2H^*}{C^*O^*2H^*}$	$\frac{2.8 \times 10^{12}}{1.47 \times 10^{13}}$	5.59×10^{12}	2.48×10 ¹¹	1.01×10^{13}		
<u>R10</u> D11	$C^*O^*2H^* \leftrightarrow C^*OH^*H^*$	$\frac{1.4/\times10^{13}}{0.00\times10^{12}}$	1.03×10^{13}	7.39×10 ¹³	$\frac{2.53 \times 10^{13}}{2.24 \times 10^{12}}$		
D12	$U^*OH^*H^* \leftrightarrow C^*H_2O^*$	9.00×10^{12}	2.95×10 ¹²	5.30×10^{12}	$\frac{5.34 \times 10^{12}}{4.91 \times 10^{14}}$		
D12	$\frac{H_2 + C^* \leftrightarrow C^* H_2 O^*}{H_2 + C^* \leftrightarrow C^* 2 H^*}$	1.02×10^{10}	3.90×10^{10}	0.42×10^{37}	$\frac{4.81 \times 10^{14}}{1.00 \times 10^{14}}$		
D14	$C^*H_2^* \leftrightarrow C^*2H^*$	7.08×10^{12}	5.04×10^{12}	1.92×10^{13}	1.99×10^{13}		
D15	$CH*H* \leftrightarrow CH_{2}*$	0.06×10 ¹²	5.94×10^{12}	1.30×10^{-1}	$\frac{1.78 \times 10^{-10}}{4.70 \times 10^{12}}$		
R16	$H_{2}^{*} + CH_{2}^{*} \leftrightarrow CH_{2}^{*}^{2}H^{*}$	1.92×10^{08}	1.52×10^{14}	1.00×10 1.92 × 10 ⁰⁸	$\frac{4.70\times10}{2.02\times10^{14}}$		
R17	$CH_2*2H^* \leftrightarrow CH_2*H^*$	6.66×10 ¹²	2 48×10 ¹³	5 27×10 ¹²	4.98×10^{11}		
R18	$CH_2 * H^* \leftrightarrow CH_4 *$	1.12×10^{13}	8 76×10 ¹¹	8 36×10 ¹¹	6 34×10 ¹²		
R19	$CH_4(G) + * \leftrightarrow CH_4*$	6.80×10 ⁰⁷	7.29×10^{14}	6.80×10 ⁰⁷	2.43×10^{15}		
	CO*	\rightarrow COH* \rightarrow H*(OH*C	0.00 10	2000 10		
R20	CO*2H* ↔ COH*H*	1.32×10^{14}	6.91×10 ¹³	2.62×10 ¹³	4.25×10 ¹²		
R21	$COH^*H^* \leftrightarrow C^*OH^*H^*$	1.48×10^{13}	3.85×10 ¹³	-	-		
	CC	$0^* \rightarrow HCO^* \rightarrow C$	CH*				
R22	$CO*2H* \leftrightarrow HCO*H*$	9.26×10 ¹³	6.18×10 ¹³	6.40×10 ¹²	2.29×10 ¹³		
R23	HCO*H* ↔ HC*O*H*	6.52×10 ¹²	1.24×10 ¹³	1.06×10 ¹³	1.39×10 ¹³		
R24	$HC*O*H* \leftrightarrow HC*OH*$	1.05×10 ¹³	1.34×10 ¹³	1.78×10 ¹³	1.80×10 ¹²		
R25	$H_2 + HC*OH* \leftrightarrow HC*OH*2H*$	1.92×10^{08}	1.53×10 ¹⁴	1.92×10^{08}	1.27×10^{14}		
R26	$\mathrm{HC*OH*2H*} \leftrightarrow \mathrm{HC*H*H_2O*}$	1.92×10 ¹³	1.91×10 ¹³	1.23×10^{14}	6.99×10 ¹²		
R27	$H_2O + CH^*H^* \leftrightarrow HC^*H^*H_2O^*$	6.42×10 ⁰⁷	2.08×10 ¹⁵	6.42×10 ⁰⁷	2.20×10 ¹⁵		
	H	$COH^* \rightarrow HC^*O$	H*				
R28	$COH^*H^* \leftrightarrow HCOH^*$	6.84×10 ¹²	3.02×10 ¹³		-		
R29	$HCO*H* \leftrightarrow HCOH*$	1.02×10^{13}	3.55×10^{13}	1.45×10^{13}	4.76×10^{12}		
R30	$HCOH^* \leftrightarrow HC^*OH^*$	8.90×10^{12}	6.24×10^{12}	2.44×10^{12}	9.85×10 ¹¹		
	НСС	$D^* \rightarrow H_2CO^* \rightarrow I$	H ₂ C*				
R31	$HCO^*H^* \leftrightarrow H_2CO^*$	4.21×10 ¹²	1.09×10^{13}	1.35×10^{13}	2.11×10^{13}		
R32	$H_2CO^* \leftrightarrow H_2C^*O^*$	3.97×10 ¹²	6.85×10 ¹¹	9.24×10 ¹³	4.27×10 ¹³		
R33	$H_2 + H_2C^*O^* \leftrightarrow H_2C^*O^*2H^*$	1.92×10^{08}	1.57×10^{14}	1.92×10^{08}	1.68×10^{14}		
<u>R34</u>	$H_2C^*O^*2H^* \leftrightarrow H_2C^*OH^*H^*$	1.35×10^{13}	3.09×10^{13}	1.81×10^{13}	9.94×10 ¹²		
R35	$H_2C^*OH^*H^* \leftrightarrow H_2C^*H_2O^*$	4.31×10^{13}	2.3×10^{12}	9.94×10 ¹²	9.80×10 ¹¹		
K36	$H_2O + CH_2^* \leftrightarrow H_2C^*H_2O^*$	6.42×10°	3./8×10 ¹⁵	6.42×10°	2.21×10 ¹⁵		
D 27		$H_2COH^* \rightarrow H_2C$	2 20 ×10 ¹⁴	1.02×1.008	2 29×1014		
K3/ D20	$H_2 \leftarrow H_2 \cup U^* \leftrightarrow H_2 \cup U^* 2H^*$	1.92×10 ⁰⁰	2.20×10^{17}	1.92×10^{10}	2.28×10^{17}		
R38 D20	$H_2 C U^* 2 H^* \leftrightarrow H_2 C U H^* H$	5.10×10^{15}	1.04×10^{15}	6.00×10^{12}	5.30×10^{12}		
К39	H₂COH H ↔ H₂C OH H	1.30^10	1.20^10	0.89~10	5.55~10		
P40		$\frac{108 \times 10^{13}}{108 \times 10^{13}}$	220×10^{13}	2.55×10 ¹³	6 18×10 ¹³		
R40	$H_2CO \times H^* \leftrightarrow H_2C^*O \times H^*$	8 28×10 ¹³	9 19×10 ¹¹	$\frac{2.33 \times 10^{-2}}{4.40 \times 10^{13}}$	1.09×10^{13}		
R47	$H_{3}C*O*H* \leftrightarrow H_{2}C*OH*$	1.02×10^{13}	3 69×10 ¹³	2 13×10 ¹³	1.05×10 1.81×10 ¹³		
A43	$H_2 + H_3C^*OH^* \leftrightarrow H_3C^*OH^*2H^*$	1.92×10^{-10}	1.69×10 ¹⁴	1.92×10^{08}	1.98×10^{14}		
R44	$H_3C^*OH^*2H^* \leftrightarrow H_3C^*H_2O^*H^*$	6.06×10 ¹⁴	8.93×10 ¹²	8.62×10 ¹²	2.98×10^{12}		
R45	$H_2O + CH_3^*H^* \leftrightarrow H_3C^*H_2O^*H^*$	6.42×10^{07}	1.26×10^{16}	6.42×10 ⁰⁷	1.11×10^{15}		
		$H_3COH^* \rightarrow H_3C$	*		•		
R46	H2COH*H ↔ H3COH*	2.25×10 ¹³	5.71×10 ¹²	5.92×10 ¹²	2.43×10 ¹²		
R47	H ₃ CO*H* ↔ H ₃ COH*	3.43×10 ¹²	8.74×10 ¹¹	2.50×10 ¹²	2.38×10 ¹¹		
R48	H ₃ COH* ↔ H ₃ C*OH*	8.52×10 ¹²	1.34×10 ¹²	8.33×10 ¹²	1.86×10 ¹³		
R49	$H_3COH(G) + * \leftrightarrow H_3COH^*$	4.81×10 ⁰⁷	2.19×10 ¹⁷	4.81×10 ⁰⁷	1.49×10 ¹⁷		

Table S2. Pre-exponential factors of CO₂ methanation on Ni₈/TiO₂-a and Ni₈/TiO₂-r. Pre-exponential factors are estimated by the translation state theory at 600 K. For adsorption steps, the pressure was set to 1 bar and the area was estimated to be 2.5 Å². The reaction numbers are the same as in Figure 4 and Figure 7.

$CO_2*2H^* \rightarrow COOH^* \rightarrow CO^*OH^*H$							
R50	$CO_2*2H^* \leftrightarrow COOH^*H^*$	3.58×10 ¹¹	1.32×10 ¹³	2.30×10 ¹²	3.19×10 ¹²		
R51	COOH*H* ↔ CO*OH*H*	4.31×10 ¹³	9.24×10 ¹²	2.14×10 ¹³	8.26×10 ¹²		
	CO2*2H*	$^* \rightarrow \text{HCOO}^* \rightarrow$	HCO*				
R52	$CO_2*2H^* \leftrightarrow HCOO^*H^*$	1.29×10 ¹²	4.87×10 ¹²	1.87×10^{13}	4.27×10 ¹²		
R53	HCOO*H* ↔ HCO*O*H*	3.16×10 ¹²	3.18×10 ¹²	4.90×10 ¹¹	7.42×10 ¹¹		
R54	$HCO*O*H* \leftrightarrow HCO*OH*$	1.44×10^{13}	3.89×10 ¹²	1.06×10 ¹³	2.18×10 ¹²		
R55	$H_2 + HCO^*OH^* \leftrightarrow HCO^*OH^*2H^*$	1.92×10^{08}	2.15×10 ¹⁴	1.92×10^{08}	3.02×10 ¹⁴		
R56	HCO*OH*2H* ↔ HCO*H ₂ O*H*	2.84×10 ¹²	1.15×10 ¹³	4.90×10 ¹²	3.97×10 ¹²		
R57	$H_2O + HCO^*H^* \leftrightarrow HCO^*H_2O^*H^*$	6.42×10 ⁰⁷	3.68×10 ¹⁵	6.42×10 ⁰⁷	2.47×10 ¹⁵		
$HCOOH^* \rightarrow HCO^*OH^*$							
R58	$HCOO^*H^* \leftrightarrow HCOOH^*$	2.12×10 ¹²	6.80×10 ¹²	6.05×10 ¹¹	5.36×10 ¹⁰		
R59	HCOOH* ↔ HCO*OH*	2.34×10 ¹³	1.99×10 ¹²	4.30×10 ¹⁰	9.48×10 ¹¹		
	HCOO* -	\rightarrow H ₂ COO* \rightarrow]	H ₂ CO*				
R60	$HCOO^*H^* \leftrightarrow H_2COO^*$	3.48×10 ¹²	5.61×10 ¹³	-	-		
R61	$H_2COO^* \leftrightarrow H_2CO^*O^*$	2.51×10 ¹²	6.53×10 ¹²	-	-		
R62	$H_2 + H_2CO^*O^* \leftrightarrow H_2CO^*O^*2H^*$	1.92×10 ⁰⁸	2.44×10 ¹⁴	-	-		
R63	$H_2CO^*O^*2H^* \leftrightarrow H_2CO^*OH^*H^*$	6.14×10 ¹¹	5.13×10 ¹²	-	-		
R64	$H_2CO^*OH^*H^* \leftrightarrow H_2CO^*H_2O^*$	2.90×10 ¹³	5.49×10 ¹¹	-	-		
R65	$H_2O^* + H_2CO^* \leftrightarrow H_2CO^*H_2O^*$	6.42×10 ⁰⁷	1.00×10^{15}	-	-		
Additional CO desorption							
R66	$CO + 2H^* \leftrightarrow CO^*2H^*$	5.15×10 ⁰⁷	5.90×10 ¹⁶	5.15×10 ⁰⁷	1.05×10^{15}		

Figure S17. Fluxes of CO_2 hydrogenation on Ni₈/TiO₂-a surface at 600 K. The numbers given in the diagram are turnover rates (s⁻¹).

Figure S18. Fluxes of CO₂ hydrogenation on Ni₈/TiO₂-r surface at 600 K. The numbers given in the diagram are turnover rates (s^{-1}) .

Figure S19. Degree of selectivity control (DSC) of (a) CH₄ and (b) CO formation as a function of temperature on Ni₈/TiO₂-a.

Figure S20. Degree of selectivity control (DSC) of (a) CH4 and (b) CO formation as a function of temperature on Ni₈/TiO₂-r.

Table S3: Activation energies and reaction energies of direct CO dissociation on Ni_8/TiO_2 anatase and rutile as function of the number of co-adsorbed H* atoms. (energies in eV and ZPE correction is included)

	#H*	$\Delta E_{ m act}$	$\Delta E_{ m R}$
	2	1.99	-0.24
Ni ₈ /TiO ₂ anatase	3	2.28	0.79
	4	2.50	1.00
	2	1.41	0.33
Ni ₈ /TiO ₂ rutile	3	1.34	0.81
	4	1.71	1.13

Table S4: Activation energies and reaction energies of direct CO dissociation on Ni_8/TiO_2 anatase and rutile as function of the number of co-adsorbed H* atoms. (energies in eV and ZPE correction is included)

	#H*	Reaction	$\Delta E_{ m act}$	$\Delta E_{ m R}$	Overall activation energy
	2	HCO formation	1.16	0.73	1.66
	2	HCO dissociation	0.93	-0.79	1.00
Ni ₈ /TiO ₂	3	HCO formation	0.94	0.82	1.83
anatase	3	HCO dissociation	1.01	-0.38	1.05
	4	HCO formation	1.03	0.83	2.00
		HCO dissociation	1.17	-0.12	2.00
	2	HCO formation	1.52	1.18	2.84
	2	HCO dissociation	1.66	-0.60	2.04
Ni ₈ /TiO ₂	3	HCO formation	1.02	0.51	2 49
anatase	5	HCO dissociation	1.98	-0.14	2.17
	4	HCO formation	1.34	0.60	2 67
		HCO dissociation	2.07	-0.01	2107

Additionally, the adsorption energy of H* was calculated to evaluate the possibility for a higher H* coverage. The results, summarized in Table R3, indicate that on both Ni_8/TiO_2 anatase and rutile surfaces, the adsorption of additional H* onto CO*2H* is less exothermic, particularly on Ni_8/TiO_2 rutile. Given the associated decrease in entropy during the adsorption process, the presence of 3H* and 4H* is deemed unlikely.

Table S5: The adsorption energy of H^* on Ni_8/TiO_2 anatase and rutile. (energies in eV and ZPE correction is included)

	Reaction	$\Delta E_{ m R,\ forward}$	$\Delta E_{ m R,\ backward}$
	$\rm CO^* + H_2 \leftrightarrow \rm CO^*2H^*$	0	1.46
Ni ₈ /TiO ₂ anatase	$CO*2H* + \frac{1}{2}H_2 \leftrightarrow CO*3H*$	0	0.62
	$CO^*3H^* + \frac{1}{2}H_2 \leftrightarrow CO^*3H^*$	0	0.47

	$CO^* + H_2 \leftrightarrow CO^*2H^*$	0	1.78
Ni ₈ /TiO ₂ rutile	$CO*2H* + \frac{1}{2}H_2 \leftrightarrow CO*3H*$	0	0.22
	$\text{CO*3H*} + \frac{1}{2} \text{H}_2 \leftrightarrow \text{CO*3H*}$	0	0.53

Figure S21. Analysis of DOS and COHP for gas-phase CO (a and f), adsorbed on Ni₈/TiO₂-a and Ni₈/TiO₂-r. The analysis includes both the initial state (IS) and transition state (TS) of CO direct dissociation on Ni₈/TiO₂-a and Ni₈/TiO₂-r. (a) to (e): DOS analysis; (f) to (j): COHP analysis. (b) and (g): IS on Ni₈/TiO₂-a; (c) and (i): IS on Ni₈/TiO₂-r; (d) and (h): TS on Ni₈/TiO₂-r (e) and (j): TS on Ni₈/TiO₂-r. The numeric values above Fermi level indicate the integrated DOS (iDOS) and integrated COHP (iCOHP).

Figure S22. DOS analysis for Ni₈ clusters in the initial state (IS) and transition state (TS) of direct dissociation of CO* on both Ni₈/TiO₂-a and Ni₈/TiO₂-r. (a) IS on Ni₈/TiO₂-a; (b): IS on Ni₈/TiO₂-r; (c) TS on Ni₈/TiO₂-a; (d): TS on Ni₈/TiO₂-r. The numeric values above Fermi level indicate the integrated DOS (iDOS).

Figure S23. COHP of sigma (red) and pi (blue) orbitals for gas-phase CO.

Figure S24. COHP of sigma (red) and pi (blue) orbitals for CO* dissociation on Ni₈/TiO₂-a and Ni₈/TiO₂-r. (a) IS on Ni₈/TiO₂-r. (a) IS on Ni₈/TiO₂-r. (a) IS on Ni₈/TiO₂-r. (b): IS on Ni₈/TiO₂-r; (c) TS on Ni₈/TiO₂-a; (d): TS on Ni₈/TiO₂-r.

Figure S25. The location of C* and O* in the transition of CO* direct dissociation on (a) Ni_8/TiO_2 -a and (b) Ni_8/TiO_2 -r. The TiO₂ supports are depicted with lines to provide a clear visualization of the positions of C* and O* species. Color coding: blue: Ni; white: H; red: O; gray: C.

Figure S26. CO₂ reaction rate (a) and product distribution (b-e) as a function of temperature on Ni₈/TiO₂-a with varying CO adsorption energy. (b): $\Delta E_{ads,CO} = -2.17 \text{ eV}$; (c): $\Delta E_{ads,CO} = -2.07 \text{ eV}$; (d): $\Delta E_{ads,CO} = -1.97 \text{ eV}$; (e): $\Delta E_{ads,CO} = -1.87 \text{ eV}$.

Figure S27. CO₂ reaction rate (a) and product distribution (b-e) as a function of temperature on Ni₈/TiO₂-r with varying CO adsorption energy. (b): $\Delta E_{ads,CO} = -2.54 \text{ eV}$; (c): $\Delta E_{ads,CO} = -2.24 \text{ eV}$; (d): $\Delta E_{ads,CO} = -2.34 \text{ eV}$; (e): $\Delta E_{ads,CO} = -2.24 \text{ eV}$.